## Related questions with answers

Identify the coordinates of the vertex and focus, the equations of the axis of symmetry and directrix, and the direction of opening of the parabola with the given equation. Then find the length of the latus rectum and graph the parabola.

$x=5 y^2+25 y+60$

Solution

VerifiedRewrite in standard form.

$\begin{aligned} x&=5y+25+60\\ x&=5\left[y+5y+\left(\frac{b}{2}\right)^2\right]+60-5\left(\frac{b}{2}\right)^2\\ x&=5\left[y+5y+\left(\frac{5}{2}\right)^2\right]+60-5\left(\frac{5}{2}\right)^2\\ x&=5\left[y+5y+\left(2.5\right)^2\right]+60-5\left(2.5\right)^2\\ x&=5\left(y+5y+6.25\right)+60-5(6.25)\\ x&=5(y+2.5)^2+28.75 \end{aligned}$

Thus, the standard form is

$\begin{aligned} x&=5(y+2.5)^2+28.75 \end{aligned}$

Therefore, $\text{vertex}=(28.75,-2.5)$ $\text{axis of symmetry}=28.75$

$\begin{aligned}\text{focus}&=\left (h+\dfrac{1}{4a},k\right)\\ &=\left (28.75+\frac{1}{4(5)},-2.5\right)\\ &=\left (28.75+\frac{1}{20},-2.5\right)\\ &=\left (\frac{576}{20},-2.5\right)\\ \end{aligned}$

$\text{focus}=\left (28.8,-3\right)\\$

$\begin{aligned}\text{directrix}:x&=h-\dfrac{1}{4a}\\ &=28.75-\dfrac{1}{4(5)}\\ &=28.75-\left(\frac{1}{20}\right)\\ &=\frac{575-1}{20}\\ &=\frac{574}{20} \end{aligned}$

$\text{directrix}=28.7$ $a>0= \text {opens to the right}$

$\begin{aligned}\text{lenght of latus rectum}&=\dfrac{1}{a}\text{ unit}\\&=\dfrac{1}{5}\\ \end{aligned}$

$\text{latus rectum}=\frac{1}{5}\text{ unit}$

## Create a free account to view solutions

## Create a free account to view solutions

## Recommended textbook solutions

#### Algebra 2, California Edition

1st Edition•ISBN: 9780078659805Beatrice Moore Harris, Carter, Casey, Cuevas, Day, Hayek, Holliday, Marks#### Big Ideas Math Algebra 2: A Common Core Curriculum

1st Edition•ISBN: 9781608408405 (1 more)Boswell, Larson#### Big Ideas Math: Algebra 2 A Common Core Curriculum

1st Edition•ISBN: 9781642088052Laurie Boswell, Ron Larson## More related questions

1/4

1/7