Question

If F(x,y,z)=(5x2y/z3),x=t3/2+2,y=ln4tF(x, y, z)=\left(5 x^2 y / z^3\right), x=t^{3 / 2}+2, y=\ln 4 t, and z=e3tz=e^{3 t}, find dF/dt in terms of x,y,z, and t.

Solutions

Verified
Answered 2 years ago
Step 1
1 of 2

Given F(x,y,z)=5x2yz3F\left(x,y ,z\right)=\dfrac{5x^{2}y}{z^{3}}, x=t32+2x=t^{\frac{3}{2}}+2 , y=ln4ty=\ln 4t and z=e3tz=e^{3t}

dFdt=dFdxdxdt+dFdydydt+dFdzdzdt=10xyz332t12+5x2z31t+15x2yz43e3t=15xyz3t12+5x2tz345x2ye3tz4\begin{align*} \dfrac{dF}{dt}&=\dfrac{dF}{dx}\dfrac{dx}{dt}+\dfrac{dF}{dy}\dfrac{dy}{dt}+\dfrac{dF}{dz}\dfrac{dz}{dt}\\ &=\dfrac{10xy}{z^{3}}\cdot\dfrac{3}{2}t^{\frac{1}{2}}+\dfrac{5x^{2}}{z^{3}}\cdot\dfrac{1}{t}+\dfrac{-15x^{2}y}{z^{4}}\cdot 3e^{3t}\\ &=\dfrac{15xy}{z^{3}}t^{\frac{1}{2}}+\dfrac{5x^{2}}{tz^{3}}-\dfrac{-45x^{2}ye^{3t}}{z^{4}}\end{align*}

Create an account to view solutions

Create an account to view solutions

More related questions

1/4

1/7