## Related questions with answers

If

$\overrightarrow{\mathrm{AB}}=\left( \begin{array}{c}{-1} \\ {3} \\ {2}\end{array}\right), \overrightarrow{\mathrm{AC}}=\left( \begin{array}{c}{2} \\ {-1} \\ {4}\end{array}\right) \quad \text { and } \quad \overrightarrow{\mathrm{BD}}=\left( \begin{array}{c}{0} \\ {2} \\ {-3}\end{array}\right)$

find: a. $\overrightarrow{\mathrm{AD}}$ b. $\overrightarrow{\mathrm{CB}}$ c. $\overrightarrow{\mathrm{CD}}$

Solution

Verified$\overrightarrow {AB}=\begin{pmatrix}-1\\3\\2\end{pmatrix}, \qquad \overrightarrow {AC}=\begin{pmatrix}2\\-1\\4\end{pmatrix}, \qquad \overrightarrow {BD}=\begin{pmatrix}0\\2\\-3\end{pmatrix}, \qquad \qquad (Given)$

$\textbf{(a)}$

$\begin{align*} \overrightarrow {AD} & =\overrightarrow {AB}+\overrightarrow {BD} && \text {Alternative path from $A$ to $D$} \\ & =\begin{pmatrix}-1\\3\\2\end{pmatrix}+\begin{pmatrix}0\\2\\-3\end{pmatrix} && \text {Add vectors} \\ \overrightarrow {AD} & =\begin{pmatrix}-1\\5\\-1\end{pmatrix} \\ \end{align*}$

$\textbf{(b)}$

$\begin{align*} \overrightarrow {CB} & =\overrightarrow {CA}+\overrightarrow {AB} && \text {Alternative path from $C$ to $B$} \\ \overrightarrow {CA} & =-\overrightarrow {AC} && \text {Negative vector} \\ \overrightarrow {CB} & =-\begin{pmatrix}2\\-1\\4\end{pmatrix}+\begin{pmatrix}-1\\3\\2\end{pmatrix} && \text {Add vectors} \\ \overrightarrow {CB} & =\begin{pmatrix}-3\\4\\-2\end{pmatrix} \\ \end{align*}$

## Create an account to view solutions

## Create an account to view solutions

## Recommended textbook solutions

#### Probability and Statistics for Engineers and Scientists

9th Edition•ISBN: 9780321629111 (9 more)Keying E. Ye, Raymond H. Myers, Ronald E. Walpole, Sharon L. Myers#### Probability and Statistics for Engineering and the Sciences

9th Edition•ISBN: 9781305251809 (9 more)Jay L. Devore#### Statistics and Probability with Applications

3rd Edition•ISBN: 9781464122163Daren S. Starnes, Josh Tabor#### Mathematics for the International Student: IB Diploma HL Core

2nd Edition•ISBN: 9781876543112David Martin, Michael Haese, Paul Urban, Robert Haese, Sandra Haese## More related questions

1/4

1/7