## Related questions with answers

Question

If $p$ is a prime number, then the least common multiple of $p$ and $p^2$ is $p^3$. Decide whether the statement is true or false.

Solution

VerifiedAnswered 2 years ago

Answered 2 years ago

Step 1

1 of 2$p^2$ is a multiple of both $p$ and itself as shown below. Since $p^2<p^3$, then $p^2$ is the least common multiple.

$p^2=p\times p$

$p^2=p^2\times1$

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### College Algebra and Trigonometry

1st Edition•ISBN: 9780078035623Donna Gerken, Julie Miller9,697 solutions

#### Mathematical Ideas

12th Edition•ISBN: 9780321693815Charles D. Miller, Hornsby, Vern E. Heeren3,490 solutions

#### Algebra and Trigonometry

4th Edition•ISBN: 9781305071742 (3 more)Lothar Redlin, Stewart, Watson11,356 solutions

#### College Algebra and Trigonometry

7th Edition•ISBN: 9781439048603Richard D. Nation, Richard N. Aufmann, Vernon C. Barker7,752 solutions

## More related questions

1/4

1/7