Try Magic Notes and save time.Try it free
Try Magic Notes and save timeCrush your year with the magic of personalized studying.Try it free
Question

In each case, express the given vector field V in the standard form viUi.\sum v_{i} U_{i}. (a) 2z2U1=7V+xyU32 z^{2} U_{1}=7 V+x y U_{3} (b) V(p)=(p1,p3p1,0)pV(\mathbf{p})=\left(p_{1}, p_{3}-p_{1}, 0\right)_{p} for all p.\mathbf{p}. (c) V=2(xU1+yU2)x(U1y2U3)V=2\left(x U_{1}+y U_{2}\right)-x\left(U_{1}-y^{2} U_{3}\right) (d) At each point p,V(p)\mathbf{p}, V(\mathbf{p}) is the vector from the point (p1,p2,p3)\left(p_{1}, p_{2}, p_{3}\right) to the point (1+p1,p2p3,p2)\left(1+p_{1}, p_{2} p_{3}, p_{2}\right) (e) At each point p,V(p)\mathbf{p}, V(\mathbf{p}) is the vector from p\mathbf{p} to the origin.

Solution

Verified
Step 1
1 of 3

(a)\ Convert the expression in the form viUi\sum v_i U_i

2z2U1=7V+xyU32z2U1xyU3=7VV=2z27U1xy7U3\begin{align*} 2z^2 U_1&=7 V+xy U_3\\ 2z^2 U_1-xy U_3&=7V\\ V&=\dfrac{2z^2}{7}U_1-\dfrac{xy}{7}U_3 \end{align*}

(b)\ Convert the given expression in the form viUi\sum v_i U_i

V(p)=(v1(p),v2(p),v3(p))p=p1U1(p)+(p3p1)U2(p)+(0)U3(p)=p1U1(p)+(p3p1)U2(p)\begin{align*} V(p)&=(v_1(p), v_2(p), v_3(p))_p\\ &=p_1 U_1(p)+(p_3-p_1)U_2(p)+(0)U_3(p)\\ &=p_1 U_1(p)+(p_3-p_1)U_2(p) \end{align*}

(c)\ Convert the given expression in the form viUi\sum v_i U_i

V=2(xU1+yU2)x(U1y2U3)=2xU1+2yU2xU1+xy2U3=xU1+2yU2+xy2U3\begin{align*} V&=2(x U_1+y U_2)-x(U_1-y^2 U_3)\\ &=2x U_1+2 y U_2-xU_1+xy^2 U_3\\ &=x U_1+2 y U_2+xy^2 U_3 \end{align*}

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Elementary Differential Geometry 2nd Edition by Barrett O'Neill

Elementary Differential Geometry

2nd EditionISBN: 9780120887354Barrett O'Neill
297 solutions
Advanced Engineering Mathematics 10th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

10th EditionISBN: 9780470458365 (1 more)Erwin Kreyszig
4,134 solutions
Mathematical Methods in the Physical Sciences 3rd Edition by Mary L. Boas

Mathematical Methods in the Physical Sciences

3rd EditionISBN: 9780471198260Mary L. Boas
3,355 solutions
Advanced Engineering Mathematics 7th Edition by Dennis G. Zill

Advanced Engineering Mathematics

7th EditionISBN: 9781284206241Dennis G. Zill
5,289 solutions

More related questions

1/4

1/7