Question

In Exercise given below, sketch the region R whose area is given by the double integral. Then change the order of integration and show that both orders yield the same area.

2204y2dxdy\int_{-2}^2 \int_0^{4-y^2} d x d y

Solution

Verified
Step 1
1 of 3

A(R)=2204y2dxdy=22[x]04y2dy=22(4y2)dy=[4yy33]22=(883)(883)=323\begin{align*} A(R) &= \int_{-2}^{2}\int_{0}^{4- y^2}dxdy\\ &= \int_{-2}^{2} [x]_{0}^{4- y^2}dy\\ &=\int_{-2}^{2} \left(4-y^2\right) dy\\ &=\left[4y - \dfrac{y^3}{3} \right]_{-2}^{2}\\ &=\left(8 - \dfrac{8}{3}\right) - \left(-8 - \dfrac{-8}{3}\right)\\ &=\dfrac{32}{3} \end{align*}

Create an account to view solutions

Create an account to view solutions

More related questions

1/4

1/7