Fresh features from the #1 AI-enhanced learning platform.Try it free
Fresh features from the #1 AI-enhanced learning platformCrush your year with the magic of personalized studying.Try it free
Question

In Exercises , use the definition of the derivative to find f(x)f^{\prime}(x).

f(x)=2x2+x1f(x)=2 x^2+x-1

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 2

Function

f(x)=2x2+x1f(x)=2x^2+x-1

is given. To find the derivative of ff by the definition, we need to find the following limit:

limΔx0f(x+Δx)f(x)Δx.\displaystyle\lim_{\Delta x\to0}{\frac{f(x+\Delta x)-f(x)}{\Delta x}}\text{.}

We get:

f(x)=limΔx0f(x+Δx)f(x)Δx=limΔx02(x+Δx)2+(x+Δx)1(2x2+x1)Δx=limΔx02(x2+2xΔx+(Δx)2)+x+Δx12x2x+1Δx=limΔx02x2+4xΔx+2(Δx)2+x+Δx12x2x+1Δx=limΔx04xΔx+2(Δx)2+ΔxΔx=limΔx0Δx(4x+2Δx+1)Δx=limΔx04x+2Δx+1=4x+20+1=4x+1.\begin{align*} f'(x)&=\displaystyle\lim_{\Delta x\to0}{\frac{f(x+\Delta x)-f(x)}{\Delta x}}\\ &=\displaystyle\lim_{\Delta x\to0}{\frac{2(x+\Delta x)^2+(x+\Delta x)-1-(2x^2+x-1)}{\Delta x}}\\ &=\displaystyle\lim_{\Delta x\to0}{\frac{2(x^2+2x\Delta x+(\Delta x)^2)+x+\Delta x-1-2x^2-x+1}{\Delta x}}\\ &=\displaystyle\lim_{\Delta x\to0}{\frac{2x^2+4x\Delta x+2(\Delta x)^2+x+\Delta x-1-2x^2-x+1}{\Delta x}}\\ &=\displaystyle\lim_{\Delta x\to0}{\frac{4x\Delta x+2(\Delta x)^2+\Delta x}{\Delta x}}\\ &=\displaystyle\lim_{\Delta x\to0}{\frac{\Delta x(4x+2\Delta x+1)}{\Delta x}}\\ &=\displaystyle\lim_{\Delta x\to0}{4x+2\Delta x+1}\\ &=4x+2\cdot0+1\\ &=4x+1\text{.} \end{align*}

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (7 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,143 solutions
Calculus of a Single Variable 6th Edition by Bruce H. Edwards, Robert P. Hostetler, Ron Larson

Calculus of a Single Variable

6th EditionISBN: 9780395885789Bruce H. Edwards, Robert P. Hostetler, Ron Larson
7,505 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (5 more)James Stewart
11,085 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927Daniel K. Clegg, James Stewart, Saleem Watson
11,048 solutions

More related questions

1/4

1/7