Related questions with answers


In Fig. we saw earlier, C1=6.00μF,C2=3.00μF,C3=C_1=6.00 \mu \mathrm{F}, C_2=3.00 \mu \mathrm{F}, C_3= 4.00μF4.00 \mu \mathrm{F}, and C4=8.00μFC_4=8.00 \mu \mathrm{F}. The capacitor network is connected to an applied potential difference VabV_{a b}. After the charges on the capacitors have reached their final values, the voltage across C3\mathrm{C}_3 is 40.0 V40.0 \mathrm{~V}. What are (c) the voltage VabV_{a b} applied to the network?


Answered 7 months ago
Answered 7 months ago
Step 1
1 of 2

(c) We want to find the applied voltage across abab. As the capacitances C123C_{123} and C4C_{4} are in series, therefore, the applied voltage will be the summation of both voltage

Vab=V4+V123=30V+40.0V=70.0VV_{ab} = V_{4} + V_{123} = 30 \,\text{V} + 40.0 \,\text{V} =\boxed{ 70.0\,\text{V}}

Create an account to view solutions

Create an account to view solutions

More related questions