Try the fastest way to create flashcards
Question

# In this exercise, compute the indefinite integral of the following function.r(t)=$2^t i+\dfrac{1}{1+2 t} j+\ln t k$

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 3

If $\bold{r}(t)= f(t)\bold{i}+g(t)\bold{j}+h(t)\bold{k}$ then

$\int\bold{r}(t)dt= \int f(t)dt\bold{i}+\int g(t)dt\bold{j}+\int h(t)dt\bold{k}+C$

where $C=C_1\bold{i}+C_2\bold{j}+C_3\bold{k}$ is a constant vector.

## Recommended textbook solutions

#### Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions

#### Calculus, Multivariable

3rd EditionISBN: 9780134766799Bernard Gillett, Bill Briggs, Lyle Cochran, William L. Briggs
1,934 solutions

#### Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,084 solutions

#### Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions