Question

Indicate whether the statement is true or false. If $R(w)=w^{3}$ then R'(-2) is negative.

Solution

VerifiedStep 1

1 of 3Let's check the statement:

$\begin{align*} R'(w)&=\frac{d}{dw}[w^3] && \text{Differentiate.}\\ &\color{#c34632}=3w^2 && \text{Apply the \textbf{Power Rule}.}\\ \\ R'(-2)&=3\cdot (-2)^2 && \text{Substitute $w=-2$.}\\ &\color{#c34632}=12 && \text{Simplify.}\\ \end{align*}$

Also, if we look at the graph, we can see that at $w=-2$, the slope of a tangent line is $\textbf{positive}$. So the statement is false.

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,142 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (6 more)James Stewart11,084 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson11,050 solutions

## More related questions

1/4

1/7