## Related questions with answers

Kerosene at $20^{\circ} \mathrm{C}$ flows at $18 \mathrm{~m}^3 / \mathrm{h}$ in a $5$ -cm-diameter pipe. If a $2$-cm-diameter thin-plate orifice with corner taps is installed, find the measured pressure drop, in $\mathrm{Pa}$ ?

Solution

VerifiedIn this task I have to find the pressure drop when a 2-cm-diameter thin-plate orifice with corner taps is applied on a 5-cm-diameter pipe. The fluid is Kerosene at $20 \text{\textdegree} C$ whose properties are:

$\begin{gather*} \rho=804 \ \dfrac{\text{kg}}{\text{m}^3} \\ \mu= 1.92 \cdot 10^{-3} \ \dfrac{\text{kg}}{\text{ms}} \\ \nu= \dfrac{\mu}{\rho}=\dfrac{ 1.92 \cdot 10^{-3} }{804} \ \dfrac{\text{m}^2}{\text{s}}=2.388 \cdot 10^{-6} \ \dfrac{\text{m}^2}{\text{s}} \end{gather*}$

The properties of the pipe and the thin-plate orifice are:

$\begin{gather*} Q=18 \ \dfrac{\text{m}^3}{\text{h}}=5 \cdot 10^{-3} \ \dfrac{\text{m}^3}{\text{s}} \\ D=0.05 \ \text{m} \\ D_t=0.02 \ \text{m} \\ \beta = \dfrac{D_t}{D}=\dfrac{0.02}{0.05}=0.4 \end{gather*}$

## Create an account to view solutions

## Create an account to view solutions

## More related questions

1/4

1/7