Related questions with answers

Question

Label the following statements as true or false. In each part, V,W, and $Z$ denote vector spaces with ordered (finite) bases $\alpha, \beta,$ and $\gamma$ respectively; $T : V \rightarrow W$ and $U : W \rightarrow Z$ denote linear transformations; and $A$ and $B$ denote matrices. $\\$ (a)$[\cup T]_${\alpha}$^${\gamma}$=[T]_${\alpha}$^${\beta}$[U]_${\beta}$^${\gamma}$ $(b)$[$\mathrm{T}$(v)]_${\beta}$=[$\mathrm{T}$]_${\alpha}$^${\beta}$[v]_${\alpha} for all$v \in V $(c)$[$\mathrm{U}$(w)]_${\beta}$=[$\mathrm{U}$]_${\alpha}$^${\beta}$[w]_${\beta} for all$w \in $\mathrm{W}$ $(d)$[$\operatorname{lv}$]_${\alpha}$=I $(e)$\left[$\mathrm{T}$^{2}\right]_${\alpha}$^${\beta}$=\left([$\mathrm{T}$]_${\alpha}$^${\beta}$\right)^{2} $(e)$\left[$\mathrm{T}$^{2}\right]_${\alpha}$^${\beta}$=\left([$\mathrm{T}$]_${\alpha}$^${\beta}$\right)^{2} $(f)$A^{2}=I$implies that$A=I$or$A=-I $(g)$$\mathrm{T}$=$\mathrm{L}$_{A}$for some matrix$A .$(h)$A^{2}=O$implies that$A=O,$where$O$denotes the zero matrix.$ $(i)$L_{A+B}=L_{A}+L_{B}$.$ $(j) If$A$is square and$A_{i j}=\delta_{i j}$for all$i$and$j,$then$A=I$ .

Solution

Verified
Step 1
1 of 11

a)\color{#4257b2}{\textbf{a)}}

[UT]αγ=[U]αβ[T]βγ[UT]_{\alpha}^{\gamma}=[U]_{\alpha}^{\beta}\cdot[T]_{\beta}^{\gamma} FALSE\color{#c34632}{FALSE}

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Linear Algebra 4th Edition by Arnold J. Insel, Lawrence E. Spence, Stephen H. Friedberg

Linear Algebra

4th EditionISBN: 9780130084514 (3 more)Arnold J. Insel, Lawrence E. Spence, Stephen H. Friedberg
863 solutions
Linear Algebra with Applications 5th Edition by Otto Bretscher

Linear Algebra with Applications

5th EditionISBN: 9780321796974 (2 more)Otto Bretscher
2,516 solutions
Linear Algebra and Its Applications 5th Edition by David C. Lay, Judi J. McDonald, Steven R. Lay

Linear Algebra and Its Applications

5th EditionISBN: 9780321982384 (4 more)David C. Lay, Judi J. McDonald, Steven R. Lay
2,070 solutions
Elementary Linear Algebra 11th Edition by Howard Anton

Elementary Linear Algebra

11th EditionISBN: 9781118473504Howard Anton
2,927 solutions

More related questions

1/4

1/7