Related questions with answers
Question
Label the following statements as true or false. In each part, V,W, and $Z$ denote vector spaces with ordered (finite) bases $\alpha, \beta,$ and $\gamma$ respectively; $T : V \rightarrow W$ and $U : W \rightarrow Z$ denote linear transformations; and $A$ and $B$ denote matrices. $\\$ (a)$[\cup T]_${\alpha}$^${\gamma}$=[T]_${\alpha}$^${\beta}$[U]_${\beta}$^${\gamma}$ $(b)$[$\mathrm{T}$(v)]_${\beta}$=[$\mathrm{T}$]_${\alpha}$^${\beta}$[v]_${\alpha} for all$v \in V $(c)$[$\mathrm{U}$(w)]_${\beta}$=[$\mathrm{U}$]_${\alpha}$^${\beta}$[w]_${\beta} for all$w \in $\mathrm{W}$ $(d)$[$\operatorname{lv}$]_${\alpha}$=I $(e)$\left[$\mathrm{T}$^{2}\right]_${\alpha}$^${\beta}$=\left([$\mathrm{T}$]_${\alpha}$^${\beta}$\right)^{2} $(e)$\left[$\mathrm{T}$^{2}\right]_${\alpha}$^${\beta}$=\left([$\mathrm{T}$]_${\alpha}$^${\beta}$\right)^{2} $(f)$A^{2}=I$implies that$A=I$or$A=-I $(g)$$\mathrm{T}$=$\mathrm{L}$_{A}$for some matrix$A .$(h)$A^{2}=O$implies that$A=O,$where$O$denotes the zero matrix.$ $(i)$L_{A+B}=L_{A}+L_{B}$.$ $(j) If$A$is square and$A_{i j}=\delta_{i j}$for all$i$and$j,$then$A=I$ .
Solution
VerifiedStep 1
1 of 11
Create an account to view solutions
By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Create an account to view solutions
By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Recommended textbook solutions

Linear Algebra
4th Edition•ISBN: 9780130084514 (3 more)Arnold J. Insel, Lawrence E. Spence, Stephen H. Friedberg863 solutions

Linear Algebra with Applications
5th Edition•ISBN: 9780321796974 (2 more)Otto Bretscher2,516 solutions

Linear Algebra and Its Applications
5th Edition•ISBN: 9780321982384 (4 more)David C. Lay, Judi J. McDonald, Steven R. Lay2,070 solutions

More related questions
- discrete math
1/4
- discrete math
1/7