Try the fastest way to create flashcards
Question

Let

Δf=f(1+h)f(1),\Delta f = f ( 1 + h ) - f ( 1 ),

where

f(x)=x1.f ( x ) = x ^ { - 1 }.

Show directly that

E=Δff(1)hE = \left| \Delta f - f ^ { \prime } ( 1 ) h \right|

is equal to

h2/(1+h).h ^ { 2 } / ( 1 + h ).

Then prove that

E2h2E \leq 2 h ^ { 2 }

if

12h12.- \frac { 1 } { 2 } \leq h \leq \frac { 1 } { 2 }.

Hint: In this case,

121+h32.\frac { 1 } { 2 } \leq 1 + h \leq \frac { 3 } { 2 }.

Solution

Verified
Step 1
1 of 3

NeedtoproveE2h2f(x)=x1f(x)=1xΔf=f(1+h)f(1)=11+h1=11h1+h=h1+h\begin{array}{l} Need\,\,to\,\,prove\,\,\\ \\ E \le 2{h^2}\\ \\ f(x) = {x^{ - 1}}\\ \\ f(x) = \frac{1}{x}\\ \\ \Delta f = f(1 + h) - f(1)\\ \\ = \frac{1}{{1 + h}} - 1\\ \\ = \frac{{1 - 1 - h}}{{1 + h}} = - \frac{h}{{1 + h}} \end{array}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,081 solutions
Calculus: Early Transcendentals 4th Edition by Colin Adams, Jon Rogawski, Robert Franzosa

Calculus: Early Transcendentals

4th EditionISBN: 9781319050740 (2 more)Colin Adams, Jon Rogawski, Robert Franzosa
8,977 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7