Try the fastest way to create flashcards

Related questions with answers

(a) identify the claim and state H0H_0 and HaH_a. (b) decide whether to use a Wilcoxon signed-rank test or a Wilcoxon rank sum test. (c) find the critical value(s). (d) find the test statistic. (e) decide whether to reject or fail to reject the null hypothesis. (f) interpret the decision in the context of the original claim. A physician wants to determine whether an experimental medication affects an individual’s heart rate. The physician randomly selects 15 patients and measures the heart rate of each. The subjects then take the medication and have their heart rates measured after one hour. The table shows the results. At α=0.05\alpha=0.05, can the physician conclude that the experimental medication affects an individual’s heart rate?

Patient12345678Heart rate (before)7281757679746567Heart rate (after)7380757974767367Patient9101112131415 Heart rate (before)76836675767868 Heart rate (after)74777077767574 \begin{matrix} \text{Patient} & \text{1} & \text{2} & \text{3} & \text{4} & \text{5} & \text{6} & \text{7} & \text{8}\\ \text{Heart rate (before)} & \text{72} & \text{81} & \text{75} & \text{76} & \text{79} & \text{74} & \text{65} & \text{67}\\ \text{Heart rate (after)} & \text{73} & \text{80} & \text{75} & \text{79} & \text{74} & \text{76} & \text{73} & \text{67}\\ \text{Patient} & \text{9} & \text{10} & \text{11} & \text{12} & \text{13} & \text{14} & \text{15} & \text{ }\\ \text{Heart rate (before)} & \text{76} & \text{83} & \text{66} & \text{75} & \text{76} & \text{78} & \text{68} & \text{ }\\ \text{Heart rate (after)} & \text{74} & \text{77} & \text{70} & \text{77} & \text{76} & \text{75} & \text{74} & \text{ }\\ \end{matrix}

Question

Let f be a constant function-that is, let f(x)=c, where c is some real number. Show that every number a gives rise to an absolute maximum and, at the same time, an absolute minimum of f.

Solution

Verified
Step 1
1 of 2

Since ff is a constant function such that f(x)=cf(x) = c, we have

f(x)=0   for all xf'(x) = 0\ \ \ \text{for all}\ x

Therefore, for every number aa in any closed interval [p,q][p,q]

f(a)=0f'(a) = 0

and so, every number aa will give an absolute maxima and at the same time, an absolute minima of ff which will be equal to

f(a)=cf(a) = c

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach 10th Edition by Tan, Soo

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

10th EditionISBN: 9781285464640 (4 more)Tan, Soo
5,088 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (5 more)James Stewart
11,084 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7