## Related questions with answers

Let

$\mathbf{F}=\frac{y}{x^2+y^2} \mathbf{i}-\frac{x}{x^2+y^2} \mathbf{j}=M \mathbf{i}+N \mathbf{j}$

(a) Show that $\partial N / \partial x=\partial M / \partial y$.

(b) Show, by using the parametrization $x=\cos t, y=\sin t$, that $\oint_C M d x+N d y=-2 \pi$, where C is the unit circle.

(c) Why doesn't this contradict Green's Theorem?

Solution

Verified**(a)** In order to find $\dfrac{\partial M}{\partial x}$, we will differentiate $M$, while treating $y$ like a constant

$\begin{aligned} \dfrac{\partial M}{\partial x}&=\dfrac{\partial}{\partial x}\left[\dfrac{-x}{x^2+y^2}\right]\\ &\overset{\color{#4257b2}{(1)}}{=}\dfrac{\left(-x\right)'\left(x^2+y^2\right)-\left(-x\right)\left(x^2+y^2\right)'}{\left(x^2+y^2\right)^2}\\ &\overset{\color{#4257b2}{(2)}}{=}\dfrac{\left(-1\right)\left(x^2+y^2\right)-\left(-x\right)\left(2x^{2-1}+0\right)}{\left(x^2+y^2\right)^2}\\ &=\dfrac{-\left(x^2+y^2\right)+2x^2}{\left(x^2+y^2\right)^2}\\ &=\dfrac{x^2-y^2}{\left(x^2+y^2\right)^2}\\ \end{aligned}$

Note$\color{#4257b2}{(1)}$: Use the *quotient rule* for differentiation

Note$\color{#4257b2}{(2)}$: Use the *power rule* for differentiation

## Create an account to view solutions

## Create an account to view solutions

## Recommended textbook solutions

#### Calculus

9th Edition•ISBN: 9780131429246 (4 more)Dale Varberg, Edwin J. Purcell, Steve E. Rigdon#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (8 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (5 more)James Stewart#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927Daniel K. Clegg, James Stewart, Saleem Watson## More related questions

1/4

1/7