Fresh features from the #1 AI-enhanced learning platform.Try it free
Fresh features from the #1 AI-enhanced learning platformCrush your year with the magic of personalized studying.Try it free

Related questions with answers

Question

Let

F=yx2+y2ixx2+y2j=Mi+Nj\mathbf{F}=\frac{y}{x^2+y^2} \mathbf{i}-\frac{x}{x^2+y^2} \mathbf{j}=M \mathbf{i}+N \mathbf{j}

(a) Show that N/x=M/y\partial N / \partial x=\partial M / \partial y.

(b) Show, by using the parametrization x=cost,y=sintx=\cos t, y=\sin t, that CMdx+Ndy=2π\oint_C M d x+N d y=-2 \pi, where C is the unit circle.

(c) Why doesn't this contradict Green's Theorem?

Solution

Verified
Answered 1 year ago
Answered 1 year ago
Step 1
1 of 4

(a) In order to find Mx\dfrac{\partial M}{\partial x}, we will differentiate MM, while treating yy like a constant

Mx=x[xx2+y2]=(1)(x)(x2+y2)(x)(x2+y2)(x2+y2)2=(2)(1)(x2+y2)(x)(2x21+0)(x2+y2)2=(x2+y2)+2x2(x2+y2)2=x2y2(x2+y2)2\begin{aligned} \dfrac{\partial M}{\partial x}&=\dfrac{\partial}{\partial x}\left[\dfrac{-x}{x^2+y^2}\right]\\ &\overset{\color{#4257b2}{(1)}}{=}\dfrac{\left(-x\right)'\left(x^2+y^2\right)-\left(-x\right)\left(x^2+y^2\right)'}{\left(x^2+y^2\right)^2}\\ &\overset{\color{#4257b2}{(2)}}{=}\dfrac{\left(-1\right)\left(x^2+y^2\right)-\left(-x\right)\left(2x^{2-1}+0\right)}{\left(x^2+y^2\right)^2}\\ &=\dfrac{-\left(x^2+y^2\right)+2x^2}{\left(x^2+y^2\right)^2}\\ &=\dfrac{x^2-y^2}{\left(x^2+y^2\right)^2}\\ \end{aligned}

Note(1)\color{#4257b2}{(1)}: Use the quotient rule for differentiation

Note(2)\color{#4257b2}{(2)}: Use the power rule for differentiation

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Calculus 9th Edition by Dale Varberg, Edwin J. Purcell, Steve E. Rigdon

Calculus

9th EditionISBN: 9780131429246 (4 more)Dale Varberg, Edwin J. Purcell, Steve E. Rigdon
6,552 solutions
Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (8 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,144 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (5 more)James Stewart
11,085 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927Daniel K. Clegg, James Stewart, Saleem Watson
11,048 solutions

More related questions

1/4

1/7