Try the fastest way to create flashcards
Question

Let P(n) be the statement

2n>n.2 ^ { n } > n.

Observe that if

2n>n,2 ^ { n } > n,

then

2n+2n>2n.2 ^ { n } + 2 ^ { n } > 2 n.

Use this to show that if P(n) is true for n = k, then P(n) is true for n = k + 1. Conclude that P(n) is true for all n.

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 3

Assume that P(n)P(n) is true for n=k>1n=k>1; in other words, assume

2k>k.2^k>k.

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,085 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions
Calculus: Early Transcendentals 3rd Edition by Colin Adams, Jon Rogawski

Calculus: Early Transcendentals

3rd EditionISBN: 9781464114885Colin Adams, Jon Rogawski
8,379 solutions

More related questions

1/4

1/7