## Related questions with answers

Question

Let T = g(x, y) be the temperature at the point (x, y) on the ellipse $x = 2 \sqrt { 2 } \cos t , \quad y = \sqrt { 2 } \sin t , \quad 0 \leq t \leq 2 \pi,$ and suppose that

$\frac { \partial T } { \partial x } = y , \quad \frac { \partial T } { \partial y } = x.$

Suppose that T = xy - 2. Find the maximum and minimum values of T on the ellipse.

Solution

VerifiedAnswered 7 months ago

Answered 7 months ago

Step 1

1 of 2We have:

$\begin{aligned} T&=g(x,y)=xy-2 \\ g\left(\dfrac{\sqrt{2}}{2}, \dfrac{\sqrt{2}}{2} \right)&=\dfrac{\sqrt{2}}{2}\cdot\dfrac{\sqrt{2}}{2}-2=\dfrac{1}{2}-2=-\dfrac{3}{2} \\ g\left(-\dfrac{\sqrt{2}}{2},\dfrac{\sqrt{2}}{2} \right)&=\left(-\dfrac{\sqrt{2}}{2} \right)\cdot\dfrac{\sqrt{2}}{2}-2=-\dfrac{1}{2}-2=-\dfrac{5}{2} \end{aligned}$

We get that:

- Maximum: $T=-\frac{3}{2}$
- Minimum: $T=-\frac{5}{2}$

## Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (3 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,144 solutions

#### Calculus: Early Transcendentals

10th Edition•ISBN: 9780470647691 (1 more)Howard Anton, Irl C. Bivens, Stephen Davis10,488 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (3 more)James Stewart11,085 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson11,049 solutions

## More related questions

1/4

1/7