Try the fastest way to create flashcards
Question

In given problem, find the work done by the force field F\mathbf{F} in moving a particle along the curve C.

F(x,y)=(x3y3)i+xy2j;C\mathbf{F}(x, y)=\left(x^3-y^3\right) \mathbf{i}+x y^2 \mathbf{j} ; \quad C is the curve x=t2x=t^2, y=t3,1t0y=t^3,-1 \leq t \leq 0.

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 5

F=(t2)3(t3)3,t2(t3)2=t6t9,t8\begin{align*} \mathbf{F} &=\left\langle\left(t^2\right)^3-\left(t^3\right)^3,t^2\left(t^3 \right)^2\right\rangle \\ &=\left\langle t^6-t^9,t^8\right\rangle \end{align*}

Use substitution to rewrite the vector F\mathbf{F} in terms of tt.

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Calculus 9th Edition by Dale Varberg, Edwin J. Purcell, Steve E. Rigdon

Calculus

9th EditionISBN: 9780131429246Dale Varberg, Edwin J. Purcell, Steve E. Rigdon
6,552 solutions
Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,081 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7