Related questions with answers

Fill in the missing entries in this loan amortization table for a 220,00020yearmortgagewithanAPRof2.95220,000 20-year mortgage with an APR of 2.95%.

PaymentBeginningMonthlyTowardsTowardsEndingNumberBalancePaymentInterestPrincipalBalance1$220,000.00a.$540.83$673.79b.2b.a.$539.19$675.44$218,650.783$218,650.78a.c.$677.10$217,973.684$217,973.68a.$535.85d.$217,294.925$217,294.92a.$534.18$680.44e.\begin{array}{|c|c|c|c|c|c|} \hline \text{Payment} & \text{Beginning} & \text{Monthly} & \text{Towards} & \text{Towards} & \text{Ending}\\ \text{Number} & \text{Balance} & \text{Payment} & \text{Interest} & \text{Principal} & \text{Balance}\\ \hline \text{1} & \text{$\$ 220,000.00$} & \text{a.} & \text{$\$ 540.83$} & \text{$\$ 673.79$} & \text{b.}\\ \hline \text{2} & \text{b.} & \text{a.} & \text{$\$ 539.19$} & \text{$\$ 675.44$} & \text{$\$ 218,650.78$}\\ \hline \text{3} & \text{$\$ 218,650.78$} & \text{a.} & \text{c.} & \text{$\$ 677.10$} & \text{$\$ 217,973.68$}\\ \hline \text{4} & \text{$\$ 217,973.68$} & \text{a.} & \text{$\$ 535.85$} & \text{d.} & \text{$\$ 217,294.92$}\\ \hline \text{5} & \text{$\$ 217,294.92$} & \text{a.} & \text{$\$ 534.18$} & \text{$\$ 680.44$} & \text{e.}\\ \hline \end{array}

$

The class is also working on creating family budgets. A sample monthly mortgage payment M can be represented by the equation 3250M=2(M500)+15003250 - M = 2(M - 500) + 1500. Jeff and Annette each solved the equation, but they disagree on the solution. Decide who is correct. For the correct solution, justify each step by writing a property or an explanation. For the incorrect solution, identify the error in the solution process. Annette.

3250M=1500+2(M500)3250M=1500+2M10003250M=2M+150010003250M=2M5003250M+M=2M+M5003250=3M5003250+500=3M500+50037503=3M31250=MM=$1250\begin{aligned} 3250-M &=1500+2(M-500) \\ 3250-M &=1500+2 M-1000 \\ 3250-M &=2 M+1500-1000 \\ 3250-M &=2 M-500 \\ 3250-M+M &=2 M+M-500 \\ 3250 &=3 M-500 \\ 3250+500 &=3 M-500+500 \\ \frac{3750}{3} &=\frac{3 M}{3} \\ 1250 &=M \\ M &=\$ 1250 \end{aligned}

Jeff

3250M=1500+2(M500)3250M=1500+2M10003250M=15001000+2M3250M=500+2M3250M+M=500+2M+M3250=500+3M3250500=500500+3M2750=3M27503=3M3916.67=MM=$916.67\begin{aligned} 3250-M &=1500+2(M-500) \\ 3250-M &=1500+2 M-1000 \\ 3250-M &=1500-1000+2 M \\ 3250-M &=500+2 M \\ 3250-M+M &=500+2 M+M \\ 3250 &=500+3 M \\ 3250-500 &=500-500+3 M \\ 2750 &=3 M \\ \frac{2750}{3} &=\frac{3 M}{3} \\ 916.67 &=M \\ M &=\$ 916.67 \end{aligned}

Question

Michelle took out a 370,000,30year,adjustableratemortgagewitha2.8370,000, 30-year, adjustable-rate mortgage with a 2.8% initial 6-month rate. The amortization table for the initial rate period is shown. After the first 6 months, the rate went up 3.4%. Calculate the next line of the amortization table.

PaymentBeginningMonthlyTowardsTowardsEndingInterest Number  Balance  Payment  Interest  Principal  Balance  Rate 1$370,000.00$1,520.31$863.33$656.98$369,343.022.80%2$369,343.02$1,520.31$861.80$658.51$368,684.512.80%3$368,684.51$1,520.31$860.26$660.05$368,0.24.462.80%4$368,024.46$1,520.31$858.72$661.59$367,362.872.80%5$367,362.87$1,520.31$857.18$663.13$366,699.742.80%6$366,699.74$1,520.31$855.63$664.68$366,035.062.80%\begin{array}{c|c|c|c|c|c|c} \text{Payment} & \text{Beginning} & \text{Monthly} & \text{Towards} & \text{Towards} & \text{Ending} & \text{Interest}\\ \text { Number } & \text { Balance } & \text { Payment } & \text { Interest } & \text { Principal } & \text { Balance } & \text { Rate } \\ \hline \hline 1 & \$ 370,000.00 & \$ 1,520.31 & \$ 863.33 & \$ 656.98 & \$ 369,343.02 & 2.80 \% \\ 2 & \$ 369,343.02 & \$ 1,520.31 & \$ 861.80 & \$ 658.51 & \$ 368,684.51 & 2.80 \% \\ 3 & \$ 368,684.51 & \$ 1,520.31 & \$ 860.26 & \$ 660.05 & \$ 368,0.24 .46 & 2.80 \% \\ 4 & \$ 368,024.46 & \$ 1,520.31 & \$ 858.72 & \$ 661.59 & \$ 367,362.87 & 2.80 \% \\ 5 & \$ 367,362.87 & \$ 1,520.31 & \$ 857.18 & \$ 663.13 & \$ 366,699.74 & 2.80 \% \\ 6 & \$ 366,699.74 & \$ 1,520.31 & \$ 855.63 & \$ 664.68 & \$ 366,035.06 & 2.80 \% \end{array}

$

Solution

Verified
Answered 1 year ago
Answered 1 year ago
Step 1
1 of 3

First find the new monthly payment with the new rate. (Time is also changed to 29.5 years because 0.5 years have elapsed)

Also use the ending balance as the new principal.

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Recommended textbook solutions

Financial Algebra 1st Edition by Richard Sgroi, Robert Gerver

Financial Algebra

1st EditionISBN: 9780538449670Richard Sgroi, Robert Gerver
2,606 solutions
Financial Algebra, Workbook 1st Edition by Richard Sgroi, Robert Gerver

Financial Algebra, Workbook

1st EditionISBN: 9780538449700Richard Sgroi, Robert Gerver
773 solutions
Financial Algebra 1st Edition by Richard Sgroi, Robert Gerver

Financial Algebra

1st EditionISBN: 9781285444857 (1 more)Richard Sgroi, Robert Gerver
2,595 solutions
Financial Algebra: Advanced Algebra with Financial Applications 2nd Edition by Richard Sgroi, Robert Gerver

Financial Algebra: Advanced Algebra with Financial Applications

2nd EditionISBN: 9781337271790Richard Sgroi, Robert Gerver
3,023 solutions

More related questions

1/4

1/7