## Related questions with answers

Numerical and Graphical Reasoning A crossed belt connects a 20-centimeter pulley (10-cm radius) on an electric motor with a 40 -centimeter pulley (20-cm radius) on a saw arbor (see figure). The electric motor runs at 1700 revolutions per minute.

Find

$\lim _{\phi \rightarrow(\pi / 2)^{-}} L .$

Use a geometric argument as the basis of a second method of finding this limit.

Solution

VerifiedIn part $(c)$ of this task we have found the function $L$ that describes the length of the belt in relation to the angle $\phi$ as shown in the picture. That function is:

$L\left(\phi\right)=30\left(\pi+2\phi\right)+\frac{60}{\tan{\phi}}\text{.}$

We get:

$\begin{align*} \lim_{\phi\to\frac{\pi}{2}^{-}}{L}&=\lim_{\phi\to\frac{\pi}{2}^{-}}{\left[30\left(\pi+2\phi\right)+\frac{60}{\tan{\phi}}\right]}\\ &=\lim_{\phi\to\frac{\pi}{2}^{-}}{\left[30\left(\pi+2\phi\right)\right]}+\lim_{\phi\to\frac{\pi}{2}^{-}}{\left[\frac{60}{\tan{\phi}}\right]}\\ &=30\cdot\left(\pi+2\cdot\frac{\pi}{2}\right)+0\tag{1}\\ &=30\cdot2\pi\\ &=60\pi\text{.} \end{align*}$

In step $(1)$ we get that the second limit is $0$. The second limit is zero because the tangent function is not defined at $x=\frac{\pi}{2}$. When $x$ approaches $\frac{\pi}{2}$ from the left side, the tangent function approaches positive infinity, and thus $\frac{60}{\tan{\phi}}$ approaches $0$.

## Create an account to view solutions

## Create an account to view solutions

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (3 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir#### Calculus of a Single Variable

6th Edition•ISBN: 9780395885789Bruce H. Edwards, Robert P. Hostetler, Ron Larson#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (3 more)James Stewart#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson## More related questions

1/4

1/7