Beer: The following table presents the number of active breweries for samples of states located east and west of the Mississippi River.

$\begin{array}{cc}
\hline
\text{East} & \text{West}\\
\hline
\begin{array}{lc}
\text{State} & \text{Number of Breweries}\\
\hline
\text{Connecticut} & 18\\
\text{Delaware} & 10\\
\text{Florida} & 47\\
\text{Georgia} & 22\\
\text{Illinois} & 52\\
\text{Kentucky} & 13\\
\text{Maine} & 38\\
\text{Maryland} & 23\\
\text{Massachusetts} & 40\\
\text{New Hampshire} & 16\\
\text{New Jersey} & 20\\
\text{New York} & 76\\
\text{New Carolina} & 46\\
\text{Sout Carolina} & 14\\
\text{Tennessee} & 19\\
\text{Vermont} & 20\\
\end{array}
&
\begin{array}{lc}
\text{State} & \text{Number of Breweries}\\
\hline
\text{Alaska} & 17\\
\text{Arizona} & 31\\
\text{California} & 305\\
\text{Colorado} & 111\\
\text{Iowa} & 21\\
\text{Louisiana} & 6\\
\text{Minnesota} & 41\\
\text{Montana} & 30\\
\text{South Dakota} & 5\\
\text{Texas} & 37\\
\text{Utah} & 15\\
&&\\
&&\\
&&\\
&&\\
&&\\
\end{array}\\
\hline
\end{array}$

$\textbf{a.}\hspace{10pt}$ Compute the sample standard deviation for the number of breweries east of the Mississippi River.

$\textbf{b.}\hspace{10pt}$ Compute the sample standard deviation for the number of breweries west of the Mississippi River.

$\textbf{c.}\hspace{10pt}$ Compute the range for each data set

$\textbf{d.}\hspace{10pt}$ Based on the standard deviations, which region has the greater spread in the number of breweries?

$\textbf{e.}\hspace{10pt}$ Based on the ranges, which region has the greater spread in the number of breweries?

$\textbf{f.}\hspace{10pt}$ The sample of western states happens to include California. Remove California from the sample of western states, and compute the sample standard deviation for the remaining western states. Does the result show that the standard deviation is not resistant? Explain.

$\textbf{g.}\hspace{10pt}$ Compute the range for the western states with California removed. Is the range resistant? Explain.