Try the fastest way to create flashcards
Question

Plot the point whose spherical coordinates are given. Then find the rectangular coordinates of the point. (3, π/2, 3π/4)

Solution

Verified
Step 1
1 of 3

Given that

(ρ,θ,ϕ)=(3,π2,3π4)\left(\rho, \theta, \phi\right) = \left(3, \dfrac{\pi}{2}, \dfrac{3\pi}{4} \right)

Therefore

x=ρsinϕcosθ=3sin(3π4)cos(π2)=0{\color{#c34632}x = \rho\sin\phi\cos\theta }= 3\sin\left(\dfrac{3\pi}{4} \right)\cos\left(\dfrac{\pi}{2} \right) = 0

y=ρsinϕsinθ=3sin(3π4)sin(π2)=3[12][1]=322{\color{#c34632}y = \rho\sin\phi\sin\theta }= 3\sin\left(\dfrac{3\pi}{4} \right)\sin\left(\dfrac{\pi}{2} \right) = 3\left[ \dfrac{1}{\sqrt{2}}\right]\left[1 \right] =\dfrac{3\sqrt{2}}{2}

z=ρcosϕ=3cos(3π4)=3[12]=322{\color{#c34632}z = \rho\cos\phi }= 3\cos\left(\dfrac{3\pi}{4} \right) = 3\left[-\dfrac{1}{\sqrt{2}} \right] =-\dfrac{3\sqrt{2}}{2}

The point is (x,y,z)=(0,322,322)\left(x, y, z \right)=\left( 0, \dfrac{3\sqrt{2}}{2}, -\dfrac{3\sqrt{2}}{2}\right)

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (5 more)James Stewart
11,084 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions
Calculus 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus

9th EditionISBN: 9781337624183 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
10,873 solutions

More related questions

1/4

1/7