Question

Prove ddxlnax=ddxlnx\frac{d}{d x} \ln |a x|=\frac{d}{d x} \ln |x| for any constant a.

Solution

Verified
Step 1
1 of 2

Given: aa is a constant

To proof: ddxlnax=ddxlnx\frac{d}{dx}\ln |ax|=\frac{d}{dx}\ln |x|

PROOF\textbf{PROOF}

Since the natural logarithm lnx\ln x is only defined when the argument xx is positive, it is safe to assume that aa and xx are both positive without loss of generality (such that x=x>0|x|=x>0 and ax=ax>0|ax|=ax>0).

ddxlnax=ddxln(ax)Use the propert of logarithms: ln(ab)=lna+lnb=ddx(lna+lnx)Derivative of sum is sum of derivatives=ddxlna+ddxlnxDerivative of constant is 0=0+ddxlnx=ddxlnx=ddxlnx\begin{align*} \frac{d}{dx}\ln |ax|&=\frac{d}{dx}\ln (ax) \\ &\color{#4257b2}\text{Use the propert of logarithms: }\ln(ab)=\ln a+\ln b \\ &=\frac{d}{dx}\left(\ln a+\ln x\right) \\ &\color{#4257b2}\text{Derivative of sum is sum of derivatives} \\ &=\frac{d}{dx}\ln a+\frac{d}{dx}\ln x \\ &\color{#4257b2}\text{Derivative of constant is 0} \\ &=0+\frac{d}{dx}\ln x \\ &=\frac{d}{dx}\ln x \\ &=\frac{d}{dx}\ln |x| \end{align*}

\square

Create an account to view solutions

Create an account to view solutions

More related questions

1/4

1/7