Try the fastest way to create flashcards
Question

Prove that each identity holds for all permissible values of x.

 a) 1+cot2x=csc2x b) tanx=csc2xcot2x c) secx+tanx=cosx1sinx d) 11+cosx+11cosx=2csc2x\begin{array}{l}{\text { a) } 1+\cot ^{2} x=\csc ^{2} x} \\ {\text { b) } \tan x=\csc 2 x-\cot 2 x} \\ {\text { c) } \sec x+\tan x=\frac{\cos x}{1-\sin x}} \\ {\text { d) } \frac{1}{1+\cos x}+\frac{1}{1-\cos x}=2 \csc ^{2} x}\end{array}

Solution

Verified
Step 1
1 of 3

a)

Starting from the left hand side we get

1+cot2x=1+cos2xsin2x=1sin2x=csc2x1+\cot^2 x=1+\frac{\cos^2 x}{\sin^2 x}=\frac{1}{\sin^2 x}=\csc^2 x

which is what we wanted to prove.

b)

Starting from the right hand side we get

csc2xcot2x=1sin2xcos2xsin2x=1cos2xsin2x=1(cos2xsin2x)2sinxcosx=sin2x+sin2x2sinxcosx=2sin2x2sinxcosx=sinxcosx=tanx\begin{align*} \csc 2x-\cot 2x&=\frac{1}{\sin 2x}-\frac{\cos 2x}{\sin 2x}\\ &=\frac{1-\cos 2x}{\sin 2x}\\ &=\frac{1-(\cos^2 x-\sin^2 x)}{2\sin x\cos x}\\ &=\frac{\sin^2 x+\sin^2 x}{2\sin x\cos x}\\ &=\frac{2\sin^2 x}{2\sin x\cos x}\\ &=\frac{\sin x}{\cos x}\\ &=\tan x \end{align*}

which is what we wanted to show.

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Pre-Calculus 12th Edition by Blaise Johnson, Bruce McAskill, Eric Balzarini, Len Bonifacio, Wayne Watt

Pre-Calculus

12th EditionISBN: 9780070738720Blaise Johnson, Bruce McAskill, Eric Balzarini, Len Bonifacio, Wayne Watt
1,433 solutions
Precalculus 2nd Edition by Carter, Cuevas, Day, Malloy

Precalculus

2nd EditionISBN: 9780076602186 (1 more)Carter, Cuevas, Day, Malloy
8,886 solutions
Nelson Functions 11 1st Edition by Chris Kirkpatrick, Marian Small

Nelson Functions 11

1st EditionISBN: 9780176332037Chris Kirkpatrick, Marian Small
1,275 solutions
Precalculus with Limits 3rd Edition by Larson

Precalculus with Limits

3rd EditionISBN: 9781133962885 (2 more)Larson
11,244 solutions

More related questions

1/4

1/7