Try the fastest way to create flashcards
Question

Prove the following statements with either induction, strong induction or proof by smallest counterexample. Prove that (1+2+3++n)2=13+23+33++n3(1+2+3+\cdots+n)^{2}=1^{3}+2^{3}+3^{3}+\cdots+n^{3} for every nNn \in \mathbb{N}.

Solution

Verified
Step 1
1 of 2

Remember\text{\underline{\textcolor{#c34632}{Remember}}}: 1+2+3++k=k(k+1)21+2+3+\cdots +k=\dfrac{k(k+1)}{2}

Proof by Mathematical induction\textbf{Proof by Mathematical induction}

For n=1n=1: (1)2=1=13=1(1)^2=1=1^3=1 thus it is true for n=1n=1.

Assume it is true for n=kn=k then (1+2+3++k)2=13+23+33++k3(1)\color{#4257b2}(1+2+3+\cdots +k)^2=1^3+2^3+3^3+\cdots +k^3 \qquad \cdots (1)

Now for n=k+1n=k+1:

(1+2+3++k+k+1)2=[(1+2+3++k)+(k+1)]=(1+2+3++k)2+2(1+2+3++k)(k+1)+(k+1)2=(1)13+23+33++k3+(k+1)[2(1+2+3++k)+k+1]=13+23+33++k3+(k+1)[2k(k+1)2+(k+1)]=13+23+33++k3+(k+1)2(k+1)=13+23+33++k3+(k+1)3\begin{align*} &(1+2+3+\cdots +k+k+1)^2\\ &=[(1+2+3+\cdots +k)+(k+1)]\\ &=(1+2+3+\cdots +k)^2+2(1+2+3+\cdots +k)(k+1)+(k+1)^2\\ &\overset{{\color{#4257b2}(1)}}{=}1^3+2^3+3^3+\cdots +k^3 +(k+1)[2(1+2+3+\cdots+k)+k+1]\\ &=1^3+2^3+3^3+\cdots +k^3 +(k+1)[\cancel{2}\dfrac{k(k+1)}{\cancel{2}}+(k+1)]\\ &=1^3+2^3+3^3+\cdots +k^3+(k+1)^2(k+1) \\ &=1^3+2^3+3^3+\cdots +k^3+(k+1)^3 \end{align*}

Thus it is true for n=k+1n=k+1.

Therefore by mathematical induction

(1+2+3++k)2=13+23+33++k3(1+2+3+\cdots +k)^2=1^3+2^3+3^3+\cdots +k^3

for every integer nNn \in \Bbb N.     \qquad \;\; \blacksquare

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Advanced Engineering Mathematics 10th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

10th EditionISBN: 9780470458365 (5 more)Erwin Kreyszig
4,134 solutions
Mathematical Methods in the Physical Sciences 3rd Edition by Mary L. Boas

Mathematical Methods in the Physical Sciences

3rd EditionISBN: 9780471198260 (1 more)Mary L. Boas
3,355 solutions
Book of Proof 2nd Edition by Richard Hammack

Book of Proof

2nd EditionISBN: 9780989472104 (1 more)Richard Hammack
372 solutions
Advanced Engineering Mathematics 7th Edition by Dennis G. Zill

Advanced Engineering Mathematics

7th EditionISBN: 9781284206241Dennis G. Zill
5,289 solutions

More related questions

1/4

1/7