Try Magic Notes and save time.Try it free
Try Magic Notes and save timeCrush your year with the magic of personalized studying.Try it free
Question

Reduce [AI][A | I] to find A1A^{−1}. In each case, check your calculations by multiplying the given matrix by the derived inverse.

[135014027]\left[\begin{array}{lll} 1 & 3 & 5 \\ 0 & 1 & 4 \\ 0 & 2 & 7 \end{array}\right]

Solution

Verified
Step 1
1 of 3

We have

A=[135014027]\begin{align*} A&=\begin{bmatrix} 1&3&5\\ 0&1&4\\ 0&2&7 \end{bmatrix} \end{align*}

To find inverse of AA, convert matrix AA in 2×42 \times 4 form as matrix

[AI]\begin{bmatrix} \begin{array}{c|c} A&I \end{array}\end{bmatrix}

. Reduce matrix

[AI]=[135100014010027001]\begin{bmatrix} \begin{array}{c|c} A&I \end{array}\end{bmatrix}=\begin{bmatrix}\begin{array}{ccc|ccc} 1&3&5&1&0&0\\ 0&1&4&0&1&0\\ 0&2&7&0&0&1 \end{array}\end{bmatrix}

to

[IA1]\begin{bmatrix} \begin{array}{c|c} I&A^{-1} \end{array}\end{bmatrix}

[135100014010027001]R2R3R312R2R3[13510002700100120112][13510002700100120112]2R3R3R27R3R3[1351000200148001021][1351000200148001021]R15R3R112R2R2[1301105010074001021][1301105010074001021]R13R2R1[1001117010074001021]\begin{align*} \begin{bmatrix}\begin{array}{ccc|ccc} 1&3&5&1&0&0\\ 0&1&4&0&1&0\\ 0&2&7&0&0&1 \end{array}\end{bmatrix}{\small\begin{matrix} R_{2}\longleftrightarrow R_{3}\\ R_{3}-\dfrac{1}{2}R_{2} \rightarrow R_{3} \end{matrix}}&\sim \begin{bmatrix}\begin{array}{ccc|ccc} 1&3&5&1&0&0\\ 0&2&7&0&0&1\\ 0&0&\dfrac{1}{2}&0&1&-\dfrac{1}{2} \end{array}\end{bmatrix}\\ \begin{bmatrix}\begin{array}{ccc|ccc} 1&3&5&1&0&0\\ 0&2&7&0&0&1\\ 0&0&\dfrac{1}{2}&0&1&-\dfrac{1}{2} \end{array}\end{bmatrix}{\small\begin{matrix} 2R_{3}\rightarrow R_{3}\\ R_{2}-7R_{3}\rightarrow R_{3} \end{matrix}}&\sim \begin{bmatrix}\begin{array}{ccc|ccc} 1&3&5&1&0&0\\ 0&2&0&0&-14&8\\ 0&0&1&0&2&-1 \end{array}\end{bmatrix}\\ \begin{bmatrix}\begin{array}{ccc|ccc} 1&3&5&1&0&0\\ 0&2&0&0&-14&8\\ 0&0&1&0&2&-1 \end{array}\end{bmatrix}{\small\begin{matrix} R_{1}-5R_{3}\rightarrow R_{1}\\ \dfrac{1}{2}R_{2}\rightarrow R_{2} \end{matrix}}&\sim \begin{bmatrix}\begin{array}{ccc|ccc} 1&3&0&1&-10&5\\ 0&1&0&0&-7&4\\ 0&0&1&0&2&-1 \end{array}\end{bmatrix}\\ \begin{bmatrix}\begin{array}{ccc|ccc} 1&3&0&1&-10&5\\ 0&1&0&0&-7&4\\ 0&0&1&0&2&-1 \end{array}\end{bmatrix}{\small\begin{matrix} R_{1}-3R_{2}\rightarrow R_{1} \end{matrix}}&\sim \begin{bmatrix}\begin{array}{ccc|ccc} 1&0&0&1&11&-7\\ 0&1&0&0&-7&4\\ 0&0&1&0&2&-1 \end{array}\end{bmatrix} \end{align*}

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Introduction to Linear Algebra 5th Edition by Jimmy T Arnold, Lee W. Johnson, R Dean Riess

Introduction to Linear Algebra

5th EditionISBN: 9780201658590 (5 more)Jimmy T Arnold, Lee W. Johnson, R Dean Riess
1,931 solutions
Linear Algebra with Applications 5th Edition by Otto Bretscher

Linear Algebra with Applications

5th EditionISBN: 9780321796974 (4 more)Otto Bretscher
2,516 solutions
Linear Algebra and Its Applications 5th Edition by David C. Lay, Judi J. McDonald, Steven R. Lay

Linear Algebra and Its Applications

5th EditionISBN: 9780321982384David C. Lay, Judi J. McDonald, Steven R. Lay
2,070 solutions
Elementary Linear Algebra 11th Edition by Howard Anton

Elementary Linear Algebra

11th EditionISBN: 9781118473504Howard Anton
2,932 solutions

More related questions

1/4

1/7