Try Magic Notes and save time.Try it free
Try Magic Notes and save timeCrush your year with the magic of personalized studying.Try it free
Question

Reduce [AI][A | I] to find A1A^{−1}. In each case, check your calculations by multiplying the given matrix by the derived inverse.

[142021353]\left[\begin{array}{lll} 1 & 4 & 2 \\ 0 & 2 & 1 \\ 3 & 5 & 3 \end{array}\right]

Solution

Verified
Step 1
1 of 3

We have

A=[142021353]\begin{align*} A&=\begin{bmatrix} 1&4&2\\ 0&2&1\\ 3&5&3 \end{bmatrix} \end{align*}

To find inverse of AA, convert matrix AA in 2×42 \times 4 form as matrix

[AI]\begin{bmatrix} \begin{array}{c|c} A&I \end{array}\end{bmatrix}

. Reduce matrix

[AI]=[142100021010353001]\begin{bmatrix} \begin{array}{c|c} A&I \end{array}\end{bmatrix}=\begin{bmatrix}\begin{array}{ccc|ccc} 1&4&2&1&0&0\\ 0&2&1&0&1&0\\ 3&5&3&0&0&1 \end{array}\end{bmatrix}

to

[IA1]\begin{bmatrix} \begin{array}{c|c} I&A^{-1} \end{array}\end{bmatrix}

[142100021010353001]R1R3R313R1R3[35300102101007311013][35300102101007311013]R2R3R367R2R3[35300107311013001767127][35300107311013001767127]7R3R3R2R3R3[35300107307773001672][35300107307773001672]R13R3R137R2R2[35018215010331001672][35018215010331001672]R15R2R113R1R1[100120010331001672]\begin{align*} \begin{bmatrix}\begin{array}{ccc|ccc} 1&4&2&1&0&0\\ 0&2&1&0&1&0\\ 3&5&3&0&0&1 \end{array}\end{bmatrix}{\small\begin{matrix} R_{1}\longleftrightarrow R_{3}\\ R_{3}-\dfrac{1}{3}R_{1} \rightarrow R_{3} \end{matrix}}&\sim \begin{bmatrix}\begin{array}{ccc|ccc} 3&5&3&0&0&1\\ 0&2&1&0&1&0\\ 0&\dfrac{7}{3}&1&1&0&-\dfrac{1}{3} \end{array}\end{bmatrix}\\ \begin{bmatrix}\begin{array}{ccc|ccc} 3&5&3&0&0&1\\ 0&2&1&0&1&0\\ 0&\dfrac{7}{3}&1&1&0&-\dfrac{1}{3} \end{array}\end{bmatrix}{\small\begin{matrix} R_{2}\longleftrightarrow R_{3}\\ R_{3}-\dfrac{6}{7}R_{2} \rightarrow R_{3} \end{matrix}}&\sim \begin{bmatrix}\begin{array}{ccc|ccc} 3&5&3&0&0&1\\ 0&\dfrac{7}{3}&1&1&0&-\dfrac{1}{3}\\ 0&0&\dfrac{1}{7}&-\dfrac{6}{7}&1&\dfrac{2}{7} \end{array}\end{bmatrix}\\ \begin{bmatrix}\begin{array}{ccc|ccc} 3&5&3&0&0&1\\ 0&\dfrac{7}{3}&1&1&0&-\dfrac{1}{3}\\ 0&0&\dfrac{1}{7}&-\dfrac{6}{7}&1&\dfrac{2}{7} \end{array}\end{bmatrix}{\small\begin{matrix} 7R_{3}\rightarrow R_{3}\\ R_{2}-R_{3}\rightarrow R_{3} \end{matrix}}&\sim \begin{bmatrix}\begin{array}{ccc|ccc} 3&5&3&0&0&1\\ 0&\dfrac{7}{3}&0&7&-7&-\dfrac{7}{3}\\ 0&0&1&-6&7&2 \end{array}\end{bmatrix}\\ \begin{bmatrix}\begin{array}{ccc|ccc} 3&5&3&0&0&1\\ 0&\dfrac{7}{3}&0&7&-7&-\dfrac{7}{3}\\ 0&0&1&-6&7&2 \end{array}\end{bmatrix}{\small\begin{matrix} R_{1}-3R_{3}\rightarrow R_{1}\\ \dfrac{3}{7}R_{2}\rightarrow R_{2} \end{matrix}}&\sim \begin{bmatrix}\begin{array}{ccc|ccc} 3&5&0&18&-21&-5\\ 0&1&0&3&-3&-1\\ 0&0&1&-6&7&2 \end{array}\end{bmatrix}\\ \begin{bmatrix}\begin{array}{ccc|ccc} 3&5&0&18&-21&-5\\ 0&1&0&3&-3&-1\\ 0&0&1&-6&7&2 \end{array}\end{bmatrix}{\small\begin{matrix} R_{1}-5R_{2}\rightarrow R_{1}\\ \dfrac{1}{3}R_{1}\rightarrow R_{1} \end{matrix}}&\sim \begin{bmatrix}\begin{array}{ccc|ccc} 1&0&0&1&-2&0\\ 0&1&0&3&-3&-1\\ 0&0&1&-6&7&2 \end{array}\end{bmatrix} \end{align*}

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Introduction to Linear Algebra 5th Edition by Jimmy T Arnold, Lee W. Johnson, R Dean Riess

Introduction to Linear Algebra

5th EditionISBN: 9780201658590 (5 more)Jimmy T Arnold, Lee W. Johnson, R Dean Riess
1,931 solutions
Linear Algebra with Applications 5th Edition by Otto Bretscher

Linear Algebra with Applications

5th EditionISBN: 9780321796974 (4 more)Otto Bretscher
2,516 solutions
Linear Algebra and Its Applications 5th Edition by David C. Lay, Judi J. McDonald, Steven R. Lay

Linear Algebra and Its Applications

5th EditionISBN: 9780321982384David C. Lay, Judi J. McDonald, Steven R. Lay
2,070 solutions
Elementary Linear Algebra 11th Edition by Howard Anton

Elementary Linear Algebra

11th EditionISBN: 9781118473504Howard Anton
2,932 solutions

More related questions

1/4

1/7