## Related questions with answers

Refrigeration The temperature $T$ of food put in a freezer is

$T=\frac{700}{t^2+4 t+10}$

where $t$ is the time in hours. Find the rate of change of $T$ with respect to $t$ at each of the following times.

(a) $t=1$
(b) $t=3$
(c ) $t=5$
(d) $t=10$

Solution

VerifiedGiven:

$\begin{aligned} T=\frac{700}{t^2+4t+10} \end{aligned}$

The rate of change is the derivative of $T$.Let $u(x)=700$ and $v(x)=t^2+4t+10$, differentiating by quotient rule:

$\begin{aligned} \left[\frac{u(x)}{v(x)}\right]'&=\left[\frac{u'(x)\cdot v(x)-u(x)\cdot v'(x)}{v(x)^2}\right]\\ \frac{700}{t^2+4t+10}&=\frac{d}{dt} \frac{700}{t^2+4t+10}\\ &=\left(\frac{\frac{d}{dt}700\cdot (t^2+4t+10)-700 \cdot \frac{d}{dt}(t^2+4t+10)}{(t^2+4t+10)^2}\right)\\ &=\left(\frac{0\cdot (t^2+4t+10)-700 \cdot (\frac{d}{dt}t^2+4\frac{d}{dt}t+\frac{d}{dt}10)}{(t^2+4t+10)^2}\right)\\ &=\left(\frac{-700 \cdot (2t^{2-1}+4\cdot 1t^{1-1}+0)}{(t^2+4t+10)^2}\right)\\ &=\left(\frac{-700 \cdot (2t+4\cdot 1)}{(t^2+4t+10)^2}\right)\\ &=\frac{-700 \cdot (2t+4)}{(t^2+4t+10)^2}\\ \end{aligned}$

## Create a free account to view solutions

## Create a free account to view solutions

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir#### Essential Calculus: Early Transcendental Functions

1st Edition•ISBN: 9780618879182Bruce H. Edwards, Larson, Robert P. Hostetler#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (5 more)James Stewart#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927Daniel K. Clegg, James Stewart, Saleem Watson## More related questions

1/4

1/7