Try the fastest way to create flashcards
Question

# Rewrite $\dfrac{1}{n}\sec^2\left(1 + \dfrac{1}{n}\right) + \dfrac{1}{n}\sec^2\left(1 + \dfrac{2}{n}\right) + \dfrac{1}{n}\sec^2\left(1 + \dfrac{3}{n}\right) + \ldots + \dfrac{1}{n}\sec^2\left(1 + \dfrac{n}{n}\right)$ using sigma notation. Do not evaluate.

Solution

Verified
Step 1
1 of 6

We have to express the given sum in the form $\sum\limits_{k=i_1}^{i_n} a_k$ (sigma notation), where $k$ is the $\textit{index of summation}$, $a_k$ is the $k$th term of the sum, $i_1$ is the $\textit{lower limit of summation}$ and $i_n$ is the $\textit{upper limit of summation}$.

## Recommended textbook solutions #### Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions #### Calculus: Early Transcendentals

1st EditionISBN: 9780534465544Tan, Soo
8,135 solutions #### Calculus: Early Transcendentals

8th EditionISBN: 9781285741550James Stewart
11,083 solutions #### Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions