Try the fastest way to create flashcards
Question

Rewrite 1nsec2(1+1n)+1nsec2(1+2n)+1nsec2(1+3n)++1nsec2(1+nn)\dfrac{1}{n}\sec^2\left(1 + \dfrac{1}{n}\right) + \dfrac{1}{n}\sec^2\left(1 + \dfrac{2}{n}\right) + \dfrac{1}{n}\sec^2\left(1 + \dfrac{3}{n}\right) + \ldots + \dfrac{1}{n}\sec^2\left(1 + \dfrac{n}{n}\right) using sigma notation. Do not evaluate.

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 6

We have to express the given sum in the form k=i1inak\sum\limits_{k=i_1}^{i_n} a_k (sigma notation), where kk is the index of summation\textit{index of summation}, aka_k is the kkth term of the sum, i1i_1 is the lower limit of summation\textit{lower limit of summation} and ini_n is the upper limit of summation\textit{upper limit of summation}.

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 1st Edition by Tan, Soo

Calculus: Early Transcendentals

1st EditionISBN: 9780534465544Tan, Soo
8,135 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550James Stewart
11,083 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7