## Related questions with answers

Question

Show how to rearrange the terms of the series from the specified exercise to form a divergent series.

$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1+n}{n^2}$

Solution

VerifiedAnswered 2 years ago

Answered 2 years ago

Step 1

1 of 3From the other exercise, we found that it conditionally converges (converges but not absolutely).

$\begin{align*} \sum_{n=1}^{\infty} (-1)^{n+1} \dfrac{n+1}{n^2} &= \dfrac{ 2}{1 } - \dfrac{ 3}{4 } + \dfrac{ 4}{9 } - \dfrac{ 5}{16 } + \dfrac{ 6}{25 } - \dfrac{ 7}{36 } + \dfrac{ 8}{ 49} \end{align*}$

The positive terms diverge to $\infty$ while the negative terms diverge to $-\infty$.

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Calculus: Graphical, Numerical, Algebraic, AP Edition

5th Edition•ISBN: 9780133311617Bert K Waits, Daniel Kennedy, David M. Bressoud, Franklin Demana, Ross L. Finney6,240 solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,142 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (5 more)James Stewart11,084 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927Daniel K. Clegg, James Stewart, Saleem Watson11,050 solutions

## More related questions

- differential equations

1/4

- differential equations

1/7