Question

Show that Lagrange's method automatically yields the correct equations of motion for a particle moving in a plane in a rotating coordinate system Oxy. (Hint: T=12mvvT=\frac{1}{2} m \mathbf{v} \cdot \mathbf{v}, where v=i(x˙ωy)+j(y˙+ωx), and Fx=V/x,Fy=V/y\mathbf{v}=\mathbf{i}(\dot{x}-\omega y)+\mathbf{j}(\dot{y}+\omega x), \text { and } F_{x}=-\partial \mathrm{V} / \partial x, F_{y}=-\partial \mathrm{V} / \partial y.)

Solution

Verified
Answered 1 year ago
Answered 1 year ago
Step 1
1 of 3

To show:\text{\underline{\textbf{To show:}}} Lagrange's Method leads to the correct equations of motion for a particle moving in a plane rotating coordinate system OxyO_{xy}

Proof:\text{\underline{\textbf{Proof}:}}

Define the Kinetic energy and Lagrangian:\text{\underline{Define the Kinetic energy and Lagrangian:}}

v=(x˙ωy)i+(y˙+ωx)jT=12mvv=12m[(x˙ωy)2+(y˙+ωx)2]=T(x˙,y˙,y,x)\begin{gather*} \mathbf{v} = (\dot{x} - \omega \cdot y) \mathbf{i} + (\dot{y} + \omega \cdot x) \mathbf{j} \\ T = \frac{1}{2} m \mathbf{v} \circ \mathbf{v} = \frac{1}{2} m [(\dot{x} - \omega \cdot y)^{2} + (\dot{y} + \omega \cdot x)^{2}] = T(\dot{x}, \dot{y}, y, x) \end{gather*}

L(x˙,y˙,y,x)=T(x˙,y˙,y,x)V(x,y)=12m[(x˙ωy)2+(y˙+ωx)2]V(x,y)\begin{gather*} L(\dot{x}, \dot{y}, y, x) = T(\dot{x}, \dot{y}, y, x) - V(x, y) = \frac{1}{2} m [(\dot{x} - \omega \cdot y)^{2} + (\dot{y} + \omega \cdot x)^{2}] - V(x, y) \end{gather*}

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Recommended textbook solutions

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics 4th Edition by Randall D. Knight

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics

4th EditionISBN: 9780133942651 (5 more)Randall D. Knight
3,508 solutions
Mathematical Methods in the Physical Sciences 3rd Edition by Mary L. Boas

Mathematical Methods in the Physical Sciences

3rd EditionISBN: 9780471198260Mary L. Boas
3,355 solutions
Analytical Mechanics 7th Edition by George L. Cassiday, Grant R. Fowles

Analytical Mechanics

7th EditionISBN: 9780534494926George L. Cassiday, Grant R. Fowles
302 solutions
Fundamentals of Physics 10th Edition by David Halliday, Jearl Walker, Robert Resnick

Fundamentals of Physics

10th EditionISBN: 9781118230718 (4 more)David Halliday, Jearl Walker, Robert Resnick
8,950 solutions

More related questions

1/4

1/7