Try the fastest way to create flashcards
Question

Show that the set W of all symmetric (3×3)(3 \times 3) matrices is a subspace of the vector space of all (3×3)(3 \times 3) matrices. Find a spanning set for W.

Solution

Verified
Step 1
1 of 2

θ\theta in the vector space of all 3×33\times3 matrices is

[000000000]\begin{bmatrix} 0&0&0\\0&0&0\\0&0&0 \end{bmatrix}

. Conclude that θt=θ\theta^t=\theta therefore θW\theta\in W.

Choose any A,BWA, B\in W. (A+B)t=At+Bt=A+B(A+B)^t=A^t+B^t=A+B so A+BWA+B\in W.

Chhose any scalar cc. (cA)t=Atct=Ac=cA(cA)^t=A^tc^t=Ac=cA so cAWcA\in W.

Conclude that WW is a subspace of the vector space of all 3×33\times3 matrices.


Choose any AWA\in W. Then

A=[a11a12a13a12a22a23a13a23a33]A=\begin{bmatrix} a_{11}&a_{12}&a_{13}\\a_{12}&a_{22}&a_{23}\\a_{13}&a_{23}&a_{33} \end{bmatrix}

.

Conclude that a spanning set for WW is {B1,B2,...,B6}\{B_1, B_2, ... , B_6\} where

B1=[100000000]B_1=\begin{bmatrix} 1&0&0\\0&0&0\\0&0&0 \end{bmatrix}

,

B2=[010100000]B_2=\begin{bmatrix} 0&1&0\\1&0&0\\0&0&0 \end{bmatrix}

,

B3=[001000100]B_3=\begin{bmatrix} 0&0&1\\0&0&0\\1&0&0 \end{bmatrix}

,

B4=[000010000]B_4=\begin{bmatrix} 0&0&0\\0&1&0\\0&0&0 \end{bmatrix}

,

B5=[000001010]B_5=\begin{bmatrix} 0&0&0\\0&0&1\\0&1&0 \end{bmatrix}

and

B6=[000000001]B_6=\begin{bmatrix} 0&0&0\\0&0&0\\0&0&1 \end{bmatrix}

.

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Introduction to Linear Algebra 5th Edition by Jimmy T Arnold, Lee W. Johnson, R Dean Riess

Introduction to Linear Algebra

5th EditionISBN: 9780201658590Jimmy T Arnold, Lee W. Johnson, R Dean Riess
1,931 solutions
Linear Algebra and Its Applications 5th Edition by David C. Lay, Judi J. McDonald, Steven R. Lay

Linear Algebra and Its Applications

5th EditionISBN: 9780321982384 (3 more)David C. Lay, Judi J. McDonald, Steven R. Lay
2,070 solutions
Elementary Linear Algebra 11th Edition by Howard Anton

Elementary Linear Algebra

11th EditionISBN: 9781118473504Howard Anton
2,932 solutions
Elementary Linear Algebra 12th Edition by Anton Kaul, Howard Anton

Elementary Linear Algebra

12th EditionISBN: 9781119406778Anton Kaul, Howard Anton
3,078 solutions

More related questions

1/4

1/7