## Related questions with answers

Question

Show that

$y = \sin \left( \tan ^ { - 1 } x + C \right)$

is the general solution of

$y ^ { \prime } = \sqrt { 1 - y ^ { 2 } } / \left( 1 + x ^ { 2 } \right).$

Then use the addition formula for the sine function to show that the general solution may be written

$y = \frac { ( \cos C ) x + \sin C } { \sqrt { 1 + x ^ { 2 } } }$

Solution

VerifiedStep 1

1 of 4We are given the equation:

$y'=\dfrac{\sqrt{1-y^2}}{1+x^2}$

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,142 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (6 more)James Stewart11,081 solutions

#### Calculus: Early Transcendentals

4th Edition•ISBN: 9781319050740 (2 more)Colin Adams, Jon Rogawski, Robert Franzosa8,977 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson11,050 solutions

## More related questions

1/4

1/7