Related questions with answers

Eruptions of the Old Faithful geyser in Yellowstone National Park typically last from 1.5 to 5 minutes. Between eruptions are dormant periods, which typically last from 50 to 100 minutes. A dormant period can also be thought of as the waiting time between eruptions. The durations in minutes for 60 consecutive dormant periods are given in the following table. It is desired to predict the length of a dormant period from the length of the dormant period immediately preceding it. To express this in symbols, denote the sequence of dormant period T1,,T60.T_{1}, \ldots, T_{60}. It is desired to predict Ti+1T_{i+1} from Ti.T_i.

iTiiTiiTiiTiiTiiTi180115621823188417251672841280225132514275528135013692376338043755376493145724823449446654835551590258435824584557667616422653367546705655758179127863773477957738741851285138674860585697519792985396849865983108020533045408650716057\begin{matrix} \text{i} & T_i & \text{i} & T_i & \text{i} & T_i & \text{i} & T_i & \text{i} & T_i & \text{i} & T_i\\ \text{1} & \text{80} & \text{11} & \text{56} & \text{21} & \text{82} & \text{31} & \text{88} & \text{41} & \text{72} & \text{51} & \text{67}\\ \text{2} & \text{84} & \text{12} & \text{80} & \text{22} & \text{51} & \text{32} & \text{51} & \text{42} & \text{75} & \text{52} & \text{81}\\ \text{3} & \text{50} & \text{13} & \text{69} & \text{23} & \text{76} & \text{33} & \text{80} & \text{43} & \text{75} & \text{53} & \text{76}\\ \text{4} & \text{93} & \text{14} & \text{57} & \text{24} & \text{82} & \text{34} & \text{49} & \text{44} & \text{66} & \text{54} & \text{83}\\ \text{5} & \text{55} & \text{15} & \text{90} & \text{25} & \text{84} & \text{35} & \text{82} & \text{45} & \text{84} & \text{55} & \text{76}\\ \text{6} & \text{76} & \text{16} & \text{42} & \text{26} & \text{53} & \text{36} & \text{75} & \text{46} & \text{70} & \text{56} & \text{55}\\ \text{7} & \text{58} & \text{17} & \text{91} & \text{27} & \text{86} & \text{37} & \text{73} & \text{47} & \text{79} & \text{57} & \text{73}\\ \text{8} & \text{74} & \text{18} & \text{51} & \text{28} & \text{51} & \text{38} & \text{67} & \text{48} & \text{60} & \text{58} & \text{56}\\ \text{9} & \text{75} & \text{19} & \text{79} & \text{29} & \text{85} & \text{39} & \text{68} & \text{49} & \text{86} & \text{59} & \text{83}\\ \text{10} & \text{80} & \text{20} & \text{53} & \text{30} & \text{45} & \text{40} & \text{86} & \text{50} & \text{71} & \text{60} & \text{57}\\ \end{matrix}

a. Construct a scatterplot of the points (Ti,Ti+1), for i=1,,59.\left(T_{i}, T_{i+1}\right), \text { for } i=1, \ldots, 59. b. Compute the least-squares line for predicting Ti+1 from TI.T_{i+1} \text { from } T_{I}. c. Find a 95% confidence interval for the slope β1.\beta_1. d. If the waiting time before the last eruption was 70 minutes, what is the predicted waiting time before the next eruption? e. Find a 98% confidence interval for the mean waiting time before the next eruption when the time before the last eruption was 70 minutes. f. Find a 99% prediction interval for the waiting time before the next eruption, if the time before the last eruption was 70 minutes.

Question

Silicon tetrachloride (SiCl4)\left(\mathrm{SiCl}_4\right) can be prepared by heating Si in chlorine gas:

Si(s)+2Cl2(g)SiCl4(l)\mathrm{Si}(s)+2 \mathrm{Cl}_2(g) \longrightarrow \mathrm{SiCl}_4(l)

In one reaction, 0.5070.507 mole of SiCl4\mathrm{SiCl_4} is produced. How many moles of molecular chlorine were used in the reaction?

Solution

Verified
Answered 1 year ago
Answered 1 year ago
Step 1
1 of 2

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

More related questions

1/4

1/7