## Related questions with answers

Sketch the curve represented by the vector-valued function and give the orientation of the curve. r(t) = ⟨cos t + t sin t, sin t - t cos t, t⟩

Solution

VerifiedWe have

$\begin{align*} x(t)=\cos t+t\sin t,&&y(t)=\sin t-t\cos t,&&\text{and}&&z(t)=t \end{align*}$

Thus,

$\begin{align*} x^2+y^2&=\left(\cos t+t\sin t\right)^2+\left(\sin t-t\cos t\right)^2\\ &=\cos ^2\left(t\right)+2t\cos \left(t\right)\sin \left(t\right)+t^2\sin ^2\left(t\right)+\sin ^2\left(t\right)-2t\sin \left(t\right)\cos \left(t\right)+t^2\cos ^2\left(t\right)\\ &=t^2\sin ^2\left(t\right)+t^2\cos ^2\left(t\right)+\cos ^2\left(t\right)+\sin ^2\left(t\right)\\ &=t^2\underbrace{\left(\sin ^2\left(t\right)+\cos ^2\left(t\right)\right)}_{\color{#c34632}=1}+1\\ &=t^2+1 \end{align*}$

Substitute $z=t$ in the above equation.

$\begin{align*} x^2+y^2&=z^2+1\\ x^2+y^2-z^2&=1\\ \end{align*}$

The required curve and the orientation of the curve is shown below:

## Create a free account to view solutions

## Create a free account to view solutions

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (5 more)James Stewart#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927Daniel K. Clegg, James Stewart, Saleem Watson## More related questions

1/4

1/7