Question

Solve each absolute value equation.

$a. \left| x ^ { 2 } - 3 x - 14 \right| = 4 \quad b. x ^ { 2 } = | x | + 6$

Solution

VerifiedStep 1

1 of 3Since for any $c>0$, $|x|=c$ implies $x=c \text{ or } x=-c,$ the given equation, $|x^2-3x-14|=4 ,$ is equivalent to

$\begin{align*} x^2-3x-14&=-4 \\\\\text{OR}\\\\ x^2-3x-14&=4 .\end{align*}$

Solving each equation results to

$\begin{align*} x^2-3x-14+4&=0 \\ x^2-3x-10&=0 \\ (x-5)(x+2)&=0 \\ x&=\{-2,5\} \\\\\text{OR}\\\\ x^2-3x-14&=4 \\ x^2-3x-14-4&=0 \\ x^2-3x-18&=0 \\ (x-6)(x+3)&=0 \\ x&=\{ -3,6 \} .\end{align*}$

Hence, $x=\left\{ -3,-2,5,6 \right\} .$

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### enVision Algebra 1

1st Edition•ISBN: 9780328931576Al Cuoco, Christine D. Thomas, Danielle Kennedy, Eric Milou, Rose Mary Zbiek3,653 solutions

#### Big Ideas Math Algebra 2: A Common Core Curriculum

1st Edition•ISBN: 9781608408405Boswell, Larson5,067 solutions

#### Big Ideas Math Integrated Mathematics II

1st Edition•ISBN: 9781680330687Boswell, Larson4,539 solutions

## More related questions

1/4

1/7