## Related questions with answers

Solve each minimum problem using the duality principle. Minimize

$C = x_1 +2x_2 + 3x_3 +4x_4$

subject to the constraints 2

$\left\{ \begin{array}{ccccccc} x_1 & & +x_3 & \geq 1 \\ & x_2 & & +x_4 \geq1 \\ - x_1 &-x_2 &-x_3 &-x_4 \geq -3 \\ x_1 \geq 0, & x_2 \geq 0, & x_3 \geq 0 & x_4 \geq 0 \end{array} \right.$

Solution

Verified${\bf STEP 1}$. Write the dual problem, a maximum problem.$\\$ Matrix associated with the miniumum problem:$\left[

$\begin{array}{lllll} 1 & 0 & 1 & 0 & 1\\ 0 & 1 & 0 & 1 & 1\\ -1 & -1 & -1 & -1 & -3\\ 1 & 2 & 3 & 4 & 0 \end{array}$

\right]$\\\\ Transposing it, we obtain$\left[

$\begin{array}{llll} 1 & 0 & -1 & 1\\ 0 & 1 & -1 & 2\\ 1 & 0 & -1 & 3\\ 0 & 1 & -1 & 4\\ 1 & 1 & -3 & 0 \end{array}$

\right]$, which translates to a (dual) maximum problem\\\\ {\bf Maximize}$\bf P= y_{1}+y_{2}-3y_{3} $with constraints:\quad$\left{

$\begin{array}{l} y_{1}-y_{3}\leq 1\\ y_{2}-y_{3}\leq 2\\ y_{1}-y_{3}\leq 3\\ y_{2}-y_{3}\leq 4 \\ y_{1}\geq 0,y_{2}\geq 0 \end{array}$

\right.

$

## Create an account to view solutions

## Create an account to view solutions

## Recommended textbook solutions

#### Finite Mathematics for Business, Economics, Life Sciences, and Social Sciences

14th Edition•ISBN: 9780134675985 (2 more)Christopher J. Stocker, Karl E. Byleen, Michael R. Ziegler, Raymond A. Barnett#### Finite Mathematics

11th Edition•ISBN: 9780321979438Margaret L. Lial, Nathan P. Ritchey, Raymond N. Greenwell#### Finite Mathematics: An Applied Approach

11th Edition•ISBN: 9780470876398 (2 more)Sullivan#### Mathematical Excursions

4th Edition•ISBN: 9781305965584Daniel K. Clegg, Joanne Lockwood, Richard D. Nation, Richard N. Aufmann## More related questions

- prealgebra

1/4

- prealgebra

1/7