Fresh features from the #1 AI-enhanced learning platform.Try it free
Fresh features from the #1 AI-enhanced learning platformCrush your year with the magic of personalized studying.Try it free
Question

Solve each minimum problem using the duality principle. Minimize

C=x1+2x2+3x3+4x4C = x_1 +2x_2 + 3x_3 +4x_4

subject to the constraints 2

{x1+x31x2+x41x1x2x3x43x10,x20,x30x40\left\{ \begin{array}{ccccccc} x_1 & & +x_3 & \geq 1 \\ & x_2 & & +x_4 \geq1 \\ - x_1 &-x_2 &-x_3 &-x_4 \geq -3 \\ x_1 \geq 0, & x_2 \geq 0, & x_3 \geq 0 & x_4 \geq 0 \end{array} \right.

Solution

Verified
Step 1
1 of 6

STEP1{\bf STEP 1}. Write the dual problem, a maximum problem.\\ Matrix associated with the miniumum problem:$\left[

10101010111111312340\begin{array}{lllll} 1 & 0 & 1 & 0 & 1\\ 0 & 1 & 0 & 1 & 1\\ -1 & -1 & -1 & -1 & -3\\ 1 & 2 & 3 & 4 & 0 \end{array}

\right]Transposingit,weobtain\\\\ Transposing it, we obtain\left[

10110112101301141130\begin{array}{llll} 1 & 0 & -1 & 1\\ 0 & 1 & -1 & 2\\ 1 & 0 & -1 & 3\\ 0 & 1 & -1 & 4\\ 1 & 1 & -3 & 0 \end{array}

\right],whichtranslatestoa(dual)maximumproblemMaximize, which translates to a (dual) maximum problem\\\\ {\bf Maximize}\bf P= y_{1}+y_{2}-3y_{3}     withconstraints:with constraints:\quad\left{

y1y31y2y32y1y33y2y34y10,y20\begin{array}{l} y_{1}-y_{3}\leq 1\\ y_{2}-y_{3}\leq 2\\ y_{1}-y_{3}\leq 3\\ y_{2}-y_{3}\leq 4 \\ y_{1}\geq 0,y_{2}\geq 0 \end{array}

\right.

$

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Finite Mathematics for Business, Economics, Life Sciences, and Social Sciences 14th Edition by Christopher J. Stocker, Karl E. Byleen, Michael R. Ziegler, Raymond A. Barnett

Finite Mathematics for Business, Economics, Life Sciences, and Social Sciences

14th EditionISBN: 9780134675985 (2 more)Christopher J. Stocker, Karl E. Byleen, Michael R. Ziegler, Raymond A. Barnett
3,808 solutions
Finite Mathematics 11th Edition by Margaret L. Lial, Nathan P. Ritchey, Raymond N. Greenwell

Finite Mathematics

11th EditionISBN: 9780321979438Margaret L. Lial, Nathan P. Ritchey, Raymond N. Greenwell
5,040 solutions
Finite Mathematics: An Applied Approach 11th Edition by Sullivan

Finite Mathematics: An Applied Approach

11th EditionISBN: 9780470876398 (2 more)Sullivan
2,978 solutions
Mathematical Excursions 4th Edition by Daniel K. Clegg, Joanne Lockwood, Richard D. Nation, Richard N. Aufmann

Mathematical Excursions

4th EditionISBN: 9781305965584Daniel K. Clegg, Joanne Lockwood, Richard D. Nation, Richard N. Aufmann
4,593 solutions

More related questions

1/4

1/7