## Related questions with answers

Question

Solve the absolute value inequality to find the interval of convergence.

$\left| \dfrac{x+1}{2} \right| < 1$

Solution

VerifiedStep 1

1 of 2Solve the given inequality as shown below, follow the steps:

$\Big|\dfrac{x+1}{2}\Big| \text{\textless} 1\qquad$ [recall: $|a|\text{\textless} b\Rightarrow -b\text{\textless} a\text{\textless} b$]

$\Rightarrow -1\text{\textless} \dfrac{x+1}{2}\text{\textless} 1\qquad$ [multiply each side by $2$]

$\Rightarrow -2\text{\textless} x+1\text{\textless} 2\qquad$ [subtract $1$ in each side]

$\Rightarrow -2-1\text{\textless} x\text{\textless} 2-1$

$\Rightarrow -3\text{\textless} x\text{\textless} 1$

The solution written in interval notation is: $\quad x\in (-3,1)$

## Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### College Algebra and Trigonometry

1st Edition•ISBN: 9780078035623Donna Gerken, Julie Miller9,697 solutions

#### Algebra and Trigonometry

4th Edition•ISBN: 9781305071742 (6 more)Lothar Redlin, Stewart, Watson10,996 solutions

#### College Algebra and Trigonometry

7th Edition•ISBN: 9781439048603 (3 more)Richard D. Nation, Richard N. Aufmann, Vernon C. Barker7,752 solutions

## More related questions

1/4

1/7