Try the fastest way to create flashcards
Question

Solve the equation.

32x1=6x31x3^{2 x-1}=6^{x} 3^{1-x}

Solution

Verified
Step 1
1 of 2

Is given the equation

32x1=6x31x\begin{aligned} 3 ^ { 2 x - 1 } = 6 ^ { x } \cdot 3 ^ { 1 - x } \end{aligned}

Since 6=236=2\cdot 3, 6x=(23)x=2x3x6 ^ { x } = ( 2 \cdot 3 ) ^ { x } = 2 ^ { x } - 3 ^ { x } (product rule for exponential) then the equation can be written as

32x1=2x3x31x32x13x31x=2x\begin{aligned} 3 ^ { 2 x - 1 } = 2 ^ { x } \cdot 3 ^ { x } \cdot 3 ^ { 1 - x } \equiv \frac { 3 ^ { 2 x - 1 } } { 3 ^ { x } \cdot 3 ^ { 1 - x } } = 2 ^ { x } \end{aligned}

Using the product and quotient rule for exponential in the left side of the equation, we have that

32x1x(1x)=2x32x2=2x32x9=2x9x9=2x9x2x=9(9/2)x=9\begin{aligned} 3 ^ { 2 x - 1 - x - ( 1 - x ) } = 2 ^ { x } \Rightarrow 3 ^ { 2 x - 2 } = 2 ^ { x }\\ \Rightarrow \frac { 3 ^ { 2 x } } { 9 } = 2 ^ { x } \Rightarrow \frac { 9 ^ { x } } { 9 } = 2 ^ { x } \Rightarrow \frac { 9 ^ { x } } { 2 ^ { x } } = 9\\ \Rightarrow ( 9 / 2 ) ^ { x } = 9 \end{aligned}

where we have used the product and quotient rules and the power rule to write 32x=(32)x=9x3 ^ { 2 x } = \left( 3 ^ { 2 } \right) ^ { x } = 9 ^ { x }. Using now the equality rule for logarithm choosing as base b=9/2b = 9 / 2 result

log9/2(9/2)x=log9/29\begin{aligned} \log _ { 9 / 2 } ( 9 / 2 ) ^ { x } = \log _ { 9 / 2 } 9 \end{aligned}

Now, if we use the power rule its result

x=log9/29\begin{aligned} x = \log _ { 9 / 2 } 9 \end{aligned}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550James Stewart
11,083 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions
Calculus 6th Edition by Karl J. Smith, Magdalena D. Toda, Monty J. Strauss

Calculus

6th EditionISBN: 9781465208880 (1 more)Karl J. Smith, Magdalena D. Toda, Monty J. Strauss
5,412 solutions

More related questions

1/4

1/7