## Related questions with answers

Solve the following initial value problems an.d leave the solution in implicit form. Use graphing software to plot the solution.. If the implicit solution. describes more than one function., be sure to indicate which fun.ct ion. corresponds to the solution. of the initial value problem. $y^{\prime}(t)=\frac{2 t^{2}}{y^{2}-1}, y(0)=0$

Solution

VerifiedIt is given that

$y^\prime(t)=\frac{2t^2}{y^2-1}\,\, , \,\, y(0)=0$

To solve the initial value problem we will first transform the equation above into its separable form:

$\begin{align*} \frac{dy}{dt}&=\frac{2t^2}{y^2-1}\\ (y^2-1)\, dy&=2t^2\, dt\tag{\footnotesize\textcolor{#c34632}{integrate both sides}}\\ \int (y^2-1)\, dy&=2\int t^2\, dt\\ \int y^2\, dy-\int \, dy&=2\cdot \frac{t^3}{3}+C\\ \frac{y^3}{3}-y&=\frac{2}{3}\cdot t^3+C \\ y^3-3y&=2t^3+C \end{align*}$

To find the constant $C$ we will use the given initial condition $y(0)=0$:

$y(0)=0\Rightarrow 0=0+C\Rightarrow C=0$

We conclude that the solution to the initial value problem is

$\pmb{y^3-3y=2t^3}$

The plot of the curve described by the solution in implicit form is given bellow.

## Create an account to view solutions

## Create an account to view solutions

## Recommended textbook solutions

#### Calculus

3rd Edition•ISBN: 9780134765631 (1 more)Bernard Gillett, Eric Schulz, Lyle Cochran, William L. Briggs#### Calculus: Early Transcendentals

7th Edition•ISBN: 9780538497909 (6 more)James Stewart#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (5 more)James Stewart#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson## More related questions

1/4

1/7