Try the fastest way to create flashcards
Question

Solve the given initial-value problem.

X=(11214123112)X,X(0)=(467)\mathbf{X}^{\prime}=\left(\begin{array}{rrr}{1} & {-12} & {-14} \\ {1} & {2} & {-3} \\ {1} & {1} & {-2}\end{array}\right) \mathbf{X}, \quad \mathbf{X}(0)=\left(\begin{array}{r}{4} \\ {6} \\ {-7}\end{array}\right)

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 20

Determine the eigenvalues of the matrix A\mathbf{A}.

det(AλI)=01λ121412λ3112λ=0(1λ)[(2λ)(2λ)(3)](12)[(2λ)(3)]+(14)[1(2λ)]=0(1λ)(42λ+2λ+λ2+3)+12(2λ+3)14(12+λ)=0(1λ)(1+λ2)+12(1λ)14(1+λ)=01+λ2+λλ3+1212λ+1414λ=0λ3+λ225λ+25=0λ3λ2+25λ25=0(λ1)(λ2+25)=0(λ1)(λ+5i)(λ5i)=0λ1=1    or    λ2=±5i\begin{align*} \det\left(\mathbf{A}-\lambda\mathbf{I}\right) &= 0\\ \begin{vmatrix} 1-\lambda & -12 & -14\\ 1 & 2-\lambda & -3\\ 1 & 1 & -2-\lambda \end{vmatrix} &= 0\\ \left(1-\lambda\right)\left[\left(2-\lambda\right)\left(-2-\lambda\right)-\left(-3 \right)\right]-\left(-12\right)\left[\left(-2-\lambda\right)-\left(-3 \right)\right]+\left(-14\right)\left[1-\left(2-\lambda\right)\right]&=0\\ \left(1-\lambda\right)\left(-4-2\lambda+2\lambda+\lambda^2+3\right)+12\left(-2-\lambda+3\right)-14\left(1-2+\lambda\right)&=0\\ \left(1-\lambda\right)\left(-1+\lambda^2\right)+12\left(1-\lambda\right)-14\left(-1+\lambda\right)&=0\\ -1+\lambda^2+\lambda-\lambda^3+12-12\lambda+14-14\lambda&=0\\ -\lambda^3+\lambda^2-25\lambda+25&=0\\ \lambda^3-\lambda^2+25\lambda-25&=0\\ \left(\lambda-1\right)\left(\lambda^2+25\right)&=0\\ \left(\lambda-1\right)\left(\lambda+5i\right)\left(\lambda-5i\right)&=0\\ \lambda_1=1\;\;\text{or}\;\;\lambda_2&=\pm5i \end{align*}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Advanced Engineering Mathematics 10th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

10th EditionISBN: 9780470458365 (5 more)Erwin Kreyszig
4,134 solutions
Advanced Engineering Mathematics 9th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

9th EditionISBN: 9780471488859 (3 more)Erwin Kreyszig
4,201 solutions
Advanced Engineering Mathematics 6th Edition by Dennis G. Zill

Advanced Engineering Mathematics

6th EditionISBN: 9781284105902 (2 more)Dennis G. Zill
5,294 solutions
Advanced Engineering Mathematics 7th Edition by Dennis G. Zill

Advanced Engineering Mathematics

7th EditionISBN: 9781284206241Dennis G. Zill
5,289 solutions

More related questions

1/4

1/7