Question

Solve the IVPs by the Laplace transform. If necessary, use partial fraction expansion as in Example 4 of the text. Show all details. y''-y'-6y=0, y(0)=11, y'(0)=28

Solution

Verified
4.9 (5 ratings)
4.9 (5 ratings)
Step 1
1 of 2

yy6y=0        ,        y(0)=11        ,        y(0)=28y''-y'-6y=0\;\;\;\;,\;\;\;\;y(0)=11\;\;\;\;,\;\;\;\;y'(0)=28


Note That :   \textbf{Note That : }\;

L{y}=YL\left\{y \right\}={\color{#19804f} {Y}}

L{y}=SYy(0)L\left\{y' \right\}={\color{#4257b2} {SY-y(0)}}

L{y}=S2YSy(0)y(0)L\left\{y'' \right\}={\color{#c34632} {S^{2}Y-Sy(0)-y'(0)}}


    (S2Y11S28)(SY11)(6Y)=0\therefore \;\; {\color{#c34632} {(S^{2}Y-11S-28)}}-{\color{#4257b2} {(SY-11)}}-{\color{#19804f} {(6Y)}}=0

(S2+S+6)Y11S17=0(S^{2}+S+6)Y-11S-17=0

Y=11S+17S2S6=  11S+17(S3)(S+2)  Y=\dfrac{11S+17}{S^{2}-S-6}=\boxed{\;\dfrac{11S+17}{(S-3)(S+2)}\;}

By Using Partial Fraction\textbf{By Using Partial Fraction}

Y=  1S+2+10S3  Y=\boxed{\;\dfrac{1}{S+2}+\dfrac{10}{S-3}\;}

Taking Laplace Transform on both sides :   \textbf{Taking Laplace Transform on both sides : }\;

Where  :    L{a0S+a}=a0  eat  Where\;:\;\boxed{\;\color{#19804f} {L\left\{\dfrac{a_{0}}{S+a} \right\}=a_{0}\;e^{-at}}\;}

      Solution is :     y=e2t+10  e3t  \therefore \;\;\; \textbf{Solution is : }\;\; \boxed{\color{#c34632} {y=e^{-2t}+10\;e^{3t}}\;}

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Recommended textbook solutions

Advanced Engineering Mathematics 10th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

10th EditionISBN: 9780470458365 (6 more)Erwin Kreyszig
4,134 solutions
Advanced Engineering Mathematics 9th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

9th EditionISBN: 9780471488859Erwin Kreyszig
4,200 solutions
Advanced Engineering Mathematics 7th Edition by Peter V. O'Neil

Advanced Engineering Mathematics

7th EditionISBN: 9781111427412 (3 more)Peter V. O'Neil
1,608 solutions
Advanced Engineering Mathematics 6th Edition by Dennis G. Zill

Advanced Engineering Mathematics

6th EditionISBN: 9781284105902Dennis G. Zill
5,281 solutions

More related questions

1/4

1/7