Question

Starting with an energy balance on a volume element, obtain the two-dimensional transient explicit finite difference equation for a general interior node in rectangular coordinates for T(x, y, t) for the case of constant thermal conductivity and no heat generation.

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 3

The volume element is centered about the general interior node (m,n)(m,n) and it involves heat conduction from four sides (right, left, top, bottom).

Assuming all heat transfer is into the element, the energy balance can be expressed as:

(Heat transferred intothe volume elementfrom all of its surfacesduring Δt)+(Heat generatedwithin thevolume elementduring Δt)=(The change in theenergy content ofthe volume elementduring Δt)\begin{align*} \left(\begin{matrix} \text{Heat transferred into}\\ \text{the volume element}\\ \text{from all of its surfaces}\\ \text{during $\Delta t$}\\ \end{matrix} \right) + \left( \begin{matrix} \text{Heat generated}\\ \text{within the}\\ \text{volume element}\\ \text{during $\Delta t$}\\ \end{matrix} \right) = \left( \begin{matrix} \text{The change in the}\\ \text{energy content of}\\ \text{the volume element}\\ \text{during $\Delta t$}\\ \end{matrix} \right) \end{align*}

When we put that in equation, we get:

Δtall sidesQ.+ΔtE.gen, element=ΔEelement\begin{align*} \Delta t \cdot \sum_{\text{all sides}} \overset{.}{Q} + \Delta t \cdot \overset{.}{E}_{\text{gen, element}} = \Delta E_{element}\\ \end{align*}

The rate of heat transfer Q.\overset{.}{Q} consists of conduction terms for interior nodes.

By dividing the last equation by Δt\Delta t and substituting DeltaEelementDelta E_{element} with its expression, we get the following:

ΔEelement=mcpΔT=ρVelementcpΔTall sidesQ.+E.gen, element=ρVelementcpΔTΔt\begin{align*} \Delta E_{element} = mc_p\Delta T = \rho V_{element}c_p\Delta T\\ \sum_{\text{all sides}} \overset{.}{Q} + \overset{.}{E}_{\text{gen, element}} = \rho V_{element}c_p \frac{\Delta T}{\Delta t}\\ \end{align*}

We can also write that equation for any node mm in the medium of its volume element.

all sidesQ.+E.gen, element=ρVelementcpTmi+1TmiΔt\begin{align*} \sum_{\text{all sides}} \overset{.}{Q} + \overset{.}{E}_{\text{gen, element}} = \rho V_{element}c_p \frac{T_m^{i+1}-T_m^i}{\Delta t}\\ \end{align*}

For a two-dimensional case, we can write it as:

Q.left+Q.top+Q.right+Q.bottom+E.gen, element=ρVelementcpTmi+1TmiΔt\begin{align*} \overset{.}{Q}_{left}+\overset{.}{Q}_{top}+\overset{.}{Q}_{right}+\overset{.}{Q}_{bottom}+\overset{.}{E}_{\text{gen, element}} = \rho V_{element}c_p \frac{T_m^{i+1}-T_m^i}{\Delta t}\\ \end{align*}

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Heat and Mass Transfer: Fundamentals and Applications 5th Edition by Yunus A. Cengel

Heat and Mass Transfer: Fundamentals and Applications

5th EditionISBN: 9780073398181 (2 more)Yunus A. Cengel
2,646 solutions
Fundamentals of Electric Circuits 6th Edition by Charles Alexander, Matthew Sadiku

Fundamentals of Electric Circuits

6th EditionISBN: 9780078028229 (1 more)Charles Alexander, Matthew Sadiku
2,120 solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics 4th Edition by Randall D. Knight

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics

4th EditionISBN: 9780133942651Randall D. Knight
3,508 solutions
Advanced Engineering Mathematics 10th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

10th EditionISBN: 9780470458365 (3 more)Erwin Kreyszig
4,134 solutions

More related questions

1/4

1/7