Related questions with answers

Question

Starting with the addition formulas for the sine and cosine, derive the addition formula

tan(A+B)=tanA+tanB1tanAtanB\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}

for the tangent.

Solution

Verified
Answered 1 year ago
Answered 1 year ago

We will be using the addition formulas for Sine and Cosine which are,

sin(A+B)=sinAcosB+sinBcosAcos(A+B)=cosAcosBsinAsinB\begin{align*} \sin(A+B)&=\sin A\cos B+\sin B\cos A \\ \cos(A+B)&=\cos A\cos B-\sin A\sin B \\ \end{align*}

Now computing the derivation of tan(A+B)\tan(A+B),

tan(A+B)=sin(A+B)cos(A+B)(Bytanθ=sinθcosθ)=sinAcosB+sinBcosAcosAcosBsinAsinB(By addition formulas)\begin{align*} \tan(A+B)&=\frac{\sin(A+B)}{\cos(A+B)} &&\left(\text{By} \tan\theta=\frac{\sin\theta}{\cos\theta}\right)\\ &=\frac{\sin A\cos B+\sin B\cos A}{\cos A\cos B-\sin A\sin B} &&(\text{By addition formulas}) \\ \end{align*}

Now dividing numerator and denominator by cosAcosB\cos A\cos B,

tan(A+B)=sinAcosB+sinBcosAcosAcosBcosAcosBsinAsinBcosAcosB=sinAcosBcosAcosB+sinBcosAcosAcosBcosAcosBcosAcosBsinAsinBcosAcosB=sinAcosA+sinBcosB1sinAsinBcosAcosB=tanA+tanB1tanAtanB(Bytanθ=sinθcosθ)\begin{align*} \tan(A+B)&=\frac{\dfrac{\sin A\cos B+\sin B\cos A}{\cos A\cos B}}{\dfrac{\cos A\cos B-\sin A\sin B}{\cos A\cos B}} \\ &=\frac{\dfrac{\sin A\cos B}{\cos A\cos B}+\dfrac{\sin B\cos A}{\cos A\cos B}}{\dfrac{\cos A\cos B}{\cos A\cos B}-\dfrac{\sin A\sin B}{\cos A\cos B}} \\ &=\frac{\dfrac{\sin A}{\cos A}+\dfrac{\sin B}{\cos B}}{1-\dfrac{\sin A\sin B}{\cos A\cos B}} \\ &=\frac{\tan A+\tan B}{1-\tan A\tan B}&&\left(\text{By}\tan\theta=\frac{\sin\theta}{\cos\theta}\right) \end{align*}

Hence derived.

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

More related questions

1/4

1/7