## Related questions with answers

State the following. The Ratio Test

Solutions

Verified{

$\textbf{RATIO TEST}$

Suppose we have the series $\sum a_n$

Now consider the Limit $L = \lim\limits_{n \to \infty}\left|\dfrac{a_{n+1}}{a_n} \right|$

If $L < 1$, the series is absolutely convergent

If $L > 1$, the series is divergent

If $L = 1$, this test is not useful, try something else}

The Ratio Test states that: (i) If $\lim_{n \rightarrow \infty}|a_{n+1}/a_{n}| < 1$, then $\sum a_n$ converges (absolutely). (ii) If $\lim_{n \rightarrow \infty}|a_{n+1}/a_{n}| > 1$, then $\sum a_n$ diverges. (iii) If $\lim_{n \rightarrow \infty}|a_{n+1}/a_{n}| = 1$, then the Test is inconclusive.

$\textbf{The Ratio Test:}$

For a series $\sum a_n$, consider the following limit:

$\begin{align*} \lim_{n\to\infty}\left| \frac{a_{n+1}}{a_n} \right| = L. \end{align*}$

$\begin{align*} (i) \quad &\quad \quad \text{If } L < 1, \text{ then the series is absolutely convergent.} \\ (ii) \quad &\quad \quad \text{If } L > 1, \text{ then the series diverges.} \\ (iii) \quad &\quad \quad \text{If } L = 1, \text{ then this test is inconclusive.} \end{align*}$

## Create a free account to view solutions

## Create a free account to view solutions

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (6 more)James Stewart#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson#### Calculus

9th Edition•ISBN: 9781337624183Daniel K. Clegg, James Stewart, Saleem Watson## More related questions

- prealgebra
- prealgebra
- earth science
- college algebra
- calculus
- prealgebra
- prealgebra
- discrete math
- calculus

1/4

- prealgebra
- prealgebra
- earth science
- college algebra
- calculus
- prealgebra
- prealgebra
- discrete math
- calculus

1/7