Try the fastest way to create flashcards
Question

State the formal definition of a limit.

Solution

Verified
Step 1
1 of 2

The formal definition of the limit of a function appears in page 80.

Limits of a function \text{\underline {Limits of a function }} (formal definition)

The limit statement

limxcf(x)=L\begin{aligned} \lim _ { x \rightarrow c } f ( x ) = L \end{aligned}

means that for each number ϵ>0\epsilon > 0 there is a number δ>0\delta > 0 such that

f(x)L<ϵwherever0<xc<δ\begin{aligned} \left | f ( x ) - L \right| < \epsilon\quad\text{wherever}\quad 0 < | x - c | < \delta \end{aligned}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,084 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (2 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions
Calculus 6th Edition by Karl J. Smith, Magdalena D. Toda, Monty J. Strauss

Calculus

6th EditionISBN: 9781465208880 (1 more)Karl J. Smith, Magdalena D. Toda, Monty J. Strauss
5,412 solutions

More related questions

1/4

1/7