Question

Superposition Principle. Let y1y_1 be a solution to

y(t)+p(t)y(t)+q(t)y(t)=g1(t)y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g_1(t)

on the interval II and let y2y_2 be a solution to

y(t)+p(t)y(t)+q(t)y(t)=g2(t)y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g_2(t)

on the same interval. Show that for any constants k1k_1 and k2k_2, the function k1y1+k2y2k_1 y_1+k_2 y_2 is a solution on II to

y(t)+p(t)y(t)+q(t)y(t)=k1g1(t)+k2g2(t)y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=k_1 g_1(t)+k_2 g_2(t) \text {. }

Solution

Verified
Step 1
1 of 2

Create an account to view solutions

Create an account to view solutions

More related questions

1/4

1/7