Question

Suppose that F=0\nabla \cdot \mathbf{F}=0 and G=0\nabla \cdot \mathbf{G}=0. Does F×G\mathbf{F} \times \mathbf{G} necessarily have zero divergence?

Solution

Verified
Step 1
1 of 3

The statement is False.

We will give a counter example as follows.

Let

F=<x,y,0> and G=<0,y,z>(1)\mathbf{F}=\left<x,-y,0\right>\text{ and }\mathbf{G}=\left<0,-y,z\right>\qquad{(1)}

F=< x, y,z><x,y,0>=( x x+ y (y)+z 0)=1+(1)+0=0\begin{align*} \nabla\cdot\mathbf{F}=&\left<\dfrac{\partial\ }{\partial x},\dfrac{\partial\ }{\partial y},\dfrac{\partial }{\partial z}\right>\cdot\left<x,-y,0\right>\tag{from (1)}\\ =&\left(\dfrac{\partial\ }{\partial x}\ x+\dfrac{\partial\ }{\partial y}\ (-y)+\dfrac{\partial }{\partial z}\ 0\right)\\ =&1+(-1)+0=0\tag{general power rule}\\ \end{align*}

G=< x, y,z><0,y,z>=( x 0+ y (y)+z z)=0+(1)+1=0\begin{align*} \nabla\cdot\mathbf{G}=&\left<\dfrac{\partial\ }{\partial x},\dfrac{\partial\ }{\partial y},\dfrac{\partial }{\partial z}\right>\cdot\left<0,-y,z\right>\tag{from (1)}\\ =&\left(\dfrac{\partial\ }{\partial x}\ 0+\dfrac{\partial\ }{\partial y}\ (-y)+\dfrac{\partial }{\partial z}\ z\right)\\ =&0+(-1)+1=0\tag{general power rule}\\ \end{align*}

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Recommended textbook solutions

Calculus: Early Transcendentals 7th Edition by James Stewart

Calculus: Early Transcendentals

7th EditionISBN: 9780538497909 (16 more)James Stewart
10,081 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550James Stewart
11,082 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,052 solutions
Calculus, Volume 3 1st Edition by OpenStax

Calculus, Volume 3

1st EditionISBN: 9781938168079OpenStax
2,404 solutions

More related questions

1/4

1/7