Try the fastest way to create flashcards

Related questions with answers

Question

Suppose that ZN(0,1)Z \sim N(0, 1). Find:

(a)P(Z0.77)(b)P(Z0.32)(c)P(3.09Z1.59)(d)P(0.82Z1.80)(e)P(Z0.91)(f)The value of x for which P(Zx)=0.23(g)The value of x for which P(Zx)=0.51(h)The value of x for which P(Zx)=0.42\begin{align*} &\mathbf{(a)}\, P(Z \le −0.77)\\ &\mathbf{(b)}\, P(Z \ge 0.32)\\ &\mathbf{(c)}\, P(−3.09 \le Z \le −1.59)\\ &\mathbf{(d)}\, P(−0.82 \le Z \le 1.80)\\ &\mathbf{(e)}\, P(|Z| \ge 0.91)\\ &\mathbf{(f)}\,\text{The value of } x \text{ for which } P(Z \le x) = 0.23\\ &\mathbf{(g)}\,\text{The value of } x \text{ for which } P(Z \ge x) = 0.51\\ &\mathbf{(h)}\,\text{The value of } x \text{ for which } P(|Z| \ge x) = 0.42\\ \end{align*}

Solution

Verified
Step 1
1 of 7

Assume that the random variable ZZ has the standard normal distribution\textit{the standard normal distribution} :

ZN(0,1)\color{#c34632}{Z \sim N(0,1)}

Hence, E(Z)=μ=0E(Z)=\mu=0 and Var(Z)=σ2=1\mathrm{Var}(Z)=\sigma^2=1. Also, in this case, the probability density function of ZZ is given by

ϕ(z)=12πez2/2,z\phi(z)=\dfrac{1}{\sqrt{2\pi}}e^{-z^2/2}\,\,,\,\,-\infty \le z \le \infty

and its cumulative distribution function can be calculated from the expression

Φ(z)=P(Zz)=z12πet2/2dt\Phi(z)=P(Z \le z)=\int\limits_{-\infty}^z \dfrac{1}{\sqrt{2\pi}}e^{-t^2/2} dt

We will calculate some probabilities by using Table I\color{#c34632}{\textbf{Table I}} at the end of the book:

(a)\colorbox{Apricot}{\textbf{(a)}} Figure1 below illustrates the part of Table I in which the value of Φ(0.77)\Phi(-0.77) is located. On the right is illustrated function ϕ(z)\phi(z), where marked area represents the probability P(Z0.77)=Φ(0.77)P(Z \le -0.77)=\Phi(-0.77) . Hence,

P(Z0.77)=Φ(0.77)=0.2206P(Z \le -0.77)=\Phi(-0.77)=\boxed{\bf{0.2206}}

(b)\colorbox{Apricot}{\textbf{(b)}} The probability P(Z0.32)P(Z \ge 0.32) can be obtained in the following way:

P(Z0.32)=1P(Z<0.32)=1[P(Z<0.32)+P(Z=0.32)=0]=1P(Z0.32)=1Φ(0.32)=10.6255=0.3745\begin{align*} P(Z \ge 0.32)&=1-P(Z < 0.32)=1-[P(Z < 0.32)+\underbrace{P(Z = 0.32)}_{=0}]\\ &=1-P(Z \le 0.32)=1-\Phi(0.32)\\ &=1-0.6255=\boxed{\bf{0.3745}} \end{align*}

This is illustrated in Figure2. Look at Table I and notice: 0.3745=Φ(0.32)0.3745=\Phi(-0.32). Hence, 1Φ(0.32)=Φ(0.32)1-\Phi(0.32)=\Phi(-0.32) . Becouse of the symmetry of the standard normal distribution about 0, this relationship holds in general. So, we have:

()Φ(z)+Φ(z)=1(\star)\,\,\,\Phi(z)+\Phi(-z)=1

Using general result P(aZb)=Φ(b)Φ(a)\color{#4257b2}{P(a \le Z \le b)=\Phi(b)-\Phi(a)} , we obtain :

(c)P(3.09Z1.59)=Φ(1.59)Φ(3.09)=0.05590.0010=0.0549\colorbox{Apricot}{\textbf{(c)}}\,\,\,P(-3.09 \le Z \le -1.59)=\Phi(-1.59)-\Phi(-3.09)=0.0559-0.0010=\boxed{\bf{0.0549}}

(d)P(0.82Z1.80)=Φ(1.80)Φ(0.82)=0.96410.2061=0.758\colorbox{Apricot}{\textbf{(d)}}\,\,\,P(-0.82 \le Z \le 1.80)=\Phi(1.80)-\Phi(-0.82)=0.9641-0.2061=\boxed{\bf{0.758}}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Probability and Statistics for Engineers and Scientists 9th Edition by Keying E. Ye, Raymond H. Myers, Ronald E. Walpole, Sharon L. Myers

Probability and Statistics for Engineers and Scientists

9th EditionISBN: 9780321629111 (4 more)Keying E. Ye, Raymond H. Myers, Ronald E. Walpole, Sharon L. Myers
1,204 solutions
Applied Statistics and Probability for Engineers 5th Edition by Douglas C. Montgomery, George C. Runger

Applied Statistics and Probability for Engineers

5th EditionISBN: 9780470053041Douglas C. Montgomery, George C. Runger
1,705 solutions
Probability and Statistics for Engineers and Scientists 4th Edition by Anthony J. Hayter

Probability and Statistics for Engineers and Scientists

4th EditionISBN: 9781111827045 (2 more)Anthony J. Hayter
1,341 solutions
Applied Statistics and Probability for Engineers 6th Edition by Douglas C. Montgomery, George C. Runger

Applied Statistics and Probability for Engineers

6th EditionISBN: 9781118539712 (1 more)Douglas C. Montgomery, George C. Runger
2,027 solutions

More related questions

1/4

1/7