Question

Test the null hypothesis of independence of the two classifications, A\mathrm{A} and B\mathrm{B}, in the 3×33 \times 3 contingency table displayed below. Test using α=.05\alpha=.05.

| | | | B\mathrm{B} | | |--------------|-------------------|------------------| | | | B1\mathrm{B}_{1} |  B2\mathrm{~B}_{2} |  B3\mathrm{~B}_{3} | | | A1\mathrm{A}_{1} | 40 | 72 | 42 | | A\mathrm{A} |  A2\mathrm{~A}_{2} | 63 | 53 | 70 | | |  A3\mathrm{~A}_{3} | 31 | 38 | 30 |

b. Estimate the percentage of the total number of responses that constitute each of the A classification totals.

Solution

Verified
Answered 10 months ago
Answered 10 months ago
Step 1
1 of 3

Given:

B1B2B3TotalA1407242154A2635370186A331383099Total134163142439\begin{array}{ c | c c c | c } & B_1 & B_2 & B_3 & Total \\ \hline A_1 & 40 & 72 & 42 & 154 \\ A_2 & 63 & 53 & 70 & 186 \\ A_3 & 31 & 38 & 30 & 99 \\ \hline Total & 134 & 163 & 142 & 439 \end{array}

We divide each count in the table by the corresponding row total:

B1B2B3TotalA1401340.2985721630.4417421420.29581544390.3508A2631340.4701531630.3252701420.49301864390.4237A3311340.2313381630.2331301420.2113994390.2255Total1111\begin{array}{ c | c c c | c } & B_1 & B_2 & B_3 & Total \\ \hline & & & \\ A_1 & \frac{40}{134}\approx 0.2985 & \frac{72}{163}\approx 0.4417 & \frac{42}{142}\approx 0.2958 & \frac{154}{439}\approx 0.3508 \\ & & & \\ A_2 & \frac{63}{134}\approx 0.4701 & \frac{53}{163}\approx 0.3252 & \frac{70}{142}\approx 0.4930 & \frac{186}{439}\approx 0.4237 \\ & & & \\ A_3 & \frac{31}{134}\approx 0.2313 & \frac{38}{163}\approx 0.2331 & \frac{30}{142}\approx 0.2113 & \frac{99}{439}\approx 0.2255 \\ & & & \\ \hline Total & 1 & 1 & 1 & 1 \end{array}

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

More related questions

1/4

1/7